Skip to main content

Probing Biological Samples in High-Resolution Microscopy: Making Sense of Spots

  • Protocol
  • First Online:
Super-Resolution Microscopy Techniques in the Neurosciences

Part of the book series: Neuromethods ((NM,volume 86))

Abstract

In recent years, microscopy techniques have reached high sensitivities and excellent resolutions, far beyond the diffraction limit. However, images of biological specimens obtained with super-resolution instruments have the tendency of being dominated by spots. The quality or faithfulness of the observed structure depends in great manner on the labeling density achieved by affinity probes. To obtain the required high labeling densities, several problems still need to be addressed. Prevalent staining methodologies are mainly based on antibodies. Due to their large size (~10–15 nm, ~150 kDa), antibodies penetrate poorly into biological samples, find only few epitopes and position the fluorophores far from the intended targets (relative to the resolutions currently achieved). These problems drastically limit imaging efforts, irrespective of the quality of the microscopes. Recently, RNA-based affinity probes (termed aptamers, ~15 kDa) and camelid-derived small single-chain antibodies (termed nanobodies, ~13 kDa) are offering a possible solution. Both of these probes have an improved imaging performance, not only for diffraction-unlimited microscopy techniques but also for conventional microscopy. The effort to develop new affinity probes of smaller dimensions should go together with improving the preservation of biological samples. The extraordinary amount of details obtained by super-resolution microscopy also enhances the detection of artifacts that fixatives and detergents cause to cellular structures. Therefore, thorough optimizations of current methodologies of sample preparation are necessary to achieve stainings capable of representing genuine biological structures and accurate protein distributions. Eventually, new fixation and permeabilization procedures able to retain more faithfully the biological structure under investigation need to be developed in the light of the current microscopy technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hell SW (2007) Far-field optical nanoscopy. Science (New York, NY) 316:1153–1158

    Article  CAS  Google Scholar 

  2. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  CAS  PubMed  Google Scholar 

  3. Toomre D, Bewersdorf J (2010) A new wave of cellular imaging. Annu Rev Cell Dev Biol 26:285–314

    Article  CAS  PubMed  Google Scholar 

  4. Xu K, Babcock HP, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9:185–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H (2012) a simple, versatile method for GfP-based super-resolution microscopy via nanobodies. Nat Methods 9:582–584

    Google Scholar 

  6. Opazo F, Levy M, Byrom M, Schäfer C, Geisler C, Groemer TW, Ellington AD, Rizzoli SO (2012) Aptamers as potential tools for superresolution microscopy. Nat Methods 9:938–939

    Article  CAS  PubMed  Google Scholar 

  7. McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6:131–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lakadamyali M, Babcock H, Bates M, Zhuang X, Lichtman J (2012) 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS ONE 7:e30826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Henriques R, Griffiths C, Hesper Rego E, Mhlanga MM (2011) PALM and STORM: unlocking live-cell super-resolution. Biopolymers 95:322–331

    Article  CAS  PubMed  Google Scholar 

  10. Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478:204–208

    Article  CAS  PubMed  Google Scholar 

  11. Chang H, Zhang M, Ji W, Chen J, Zhang Y, Liu B, Lu J, Zhang J, Xu P, Xu T (2012) A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci 109:4455–4460

    Article  CAS  PubMed  Google Scholar 

  12. Lisenbee CS, Karnik SK, Trelease RN (2003) Overexpression and mislocalization of a tail-anchored GFP redefines the identity of peroxisomal ER. Traffic (Copenhagen, Denmark) 4:491–501

    Article  CAS  Google Scholar 

  13. Opazo F, Punge A, Bückers J, Hoopmann P, Kastrup L, Hell SW, Rizzoli SO (2010) Limited intermixing of synaptic vesicle components upon vesicle recycling. Traffic (Copenhagen, Denmark) 11:800–812

    Article  CAS  Google Scholar 

  14. Rappoport JZ, Simon SM (2008) A functional GFP fusion for imaging clathrin-mediated endocytosis. Traffic (Copenhagen, Denmark) 9:1250–1255

    Article  CAS  Google Scholar 

  15. Coons AH, Creech HJ, Jones RN (1941)Immunological properties of an antibody containing a fluorescent group. Exp Biol Med (Maywood) 47:200–202

    Google Scholar 

  16. Dyba M, Jakobs S, Hell SW (2003) Immunofluorescence stimulated emission depletion microscopy. Nat Biotechnol 21:1303–1304

    Article  CAS  PubMed  Google Scholar 

  17. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939

    Article  CAS  PubMed  Google Scholar 

  18. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  PubMed  Google Scholar 

  19. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science (New York, NY) 319:810–813

    Article  CAS  Google Scholar 

  20. Testa I, Wurm CA, Medda R, Rothermel E, von Middendorf C, Fölling J, Jakobs S, Schönle A, Hell SW, Eggeling C (2010) Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J 99:2686–2694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science (New York, NY) 313:1642–1645

    Article  CAS  Google Scholar 

  22. Linde S, Kasper R, Heilemann M, Sauer M (2008) Photoswitching microscopy with standard fluorophores. Appl Phys B 93:725–731

    Article  Google Scholar 

  23. Zhuang X (2009) Nano-imaging with Storm. Nat Photonics 3:365–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wildanger D, Medda R, Kastrup L, Hell SW (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236:35–43

    Article  CAS  PubMed  Google Scholar 

  25. Lang T, Rizzoli SO (2010) Membrane protein clusters at nanoscale resolution: more than pretty pictures. Physiology (Bethesda, MD) 25:116–124

    Article  CAS  Google Scholar 

  26. Tanaka KAK, Suzuki KGN, Shirai YM, Shibutani ST, Miyahara MSH, Tsuboi H, Yahara M, Yoshimura A, Mayor S, Fujiwara TK, Kusumi A (2010) Membrane molecules mobile even after chemical fixation. Nat Methods 7:865–866

    Article  CAS  PubMed  Google Scholar 

  27. Kilár F, Simon I, Lakatos S, Vonderviszt F, Medgyesi GA, Závodszky P (1985) Conformation of human IgG subclasses in solution. Small-angle X-ray scattering and hydrodynamic studies. Eur J Biochem 147:17–25

    Article  PubMed  Google Scholar 

  28. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  CAS  PubMed  Google Scholar 

  29. Muyldermans S (2001) Single domain camel antibodies: current status. J Biotechnol 74:277–302

    CAS  PubMed  Google Scholar 

  30. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455

    Article  CAS  PubMed  Google Scholar 

  31. Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  33. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (New York, NY) 249:505–510

    Article  CAS  Google Scholar 

  34. Yan AC, Levy M (2009) Aptamers and aptamer targeted delivery. RNA Biol 6:316–320

    Article  CAS  PubMed  Google Scholar 

  35. Janas T, Janas T (2011) The selection of aptamers specific for membrane molecular targets. Cell Mol Biol Lett 16:25–39

    Article  CAS  PubMed  Google Scholar 

  36. Werner A, Konarev PV, Svergun DI, Hahn U (2009) Characterization of a fluorophore binding RNA aptamer by fluorescence correlation spectroscopy and small angle X-ray scattering. Anal Biochem 389:52–62

    Article  CAS  PubMed  Google Scholar 

  37. Chelliserrykattil J, Ellington AD (2004) Evolution of a T7 RNA polymerase variant that transcribes 2′-O-methyl RNA. Nat Biotechnol 22:1155–1160

    Article  CAS  PubMed  Google Scholar 

  38. Foy JW-D, Rittenhouse K, Modi M, Patel M (2007) Local tolerance and systemic safety of pegaptanib sodium in the dog and rabbit. J Ocul Pharmacol Ther 23:452–466

    Article  CAS  PubMed  Google Scholar 

  39. Ireson CR, Kelland LR (2006) Discovery and development of anticancer aptamers. Mol Cancer Ther 5:2957–2962

    Article  CAS  PubMed  Google Scholar 

  40. Zeng Z, Zhang P, Zhao N, Sheehan AM, Tung C-H, Chang C-C, Zu Y (2010) Using oligonucleotide aptamer probes for immunostaining of formalin-fixed and paraffin-embedded tissues. Mod Pathol 23:1553–1558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hopwood D (1969) Fixatives and fixation: a review. Histochem J 1:323–360

    Article  CAS  PubMed  Google Scholar 

  42. Buus S, Rockberg J, Forsstr Oumlm BO, Nilsson P, Uhlén M, Schafer-Nielsen C (2012) High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol Cell Proteom 11:1790–1800

    Google Scholar 

  43. Barysch SV, Aggarwal S, Jahn R, Rizzoli SO (2009) Sorting in early endosomes reveals connections to docking- and fusion-associated factors. Proc Natl Acad Sci 106:9697–9702

    Article  CAS  PubMed  Google Scholar 

  44. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749

    Article  CAS  PubMed  Google Scholar 

  45. Wilner SE, Wengerter B, Maier K, de Lourdes Borba Magalhães M, Del Amo DS, Pai S, Opazo F, Rizzoli SO, Yan A, Levy M (2012) An RNA alternative to human transferrin: a new tool for targeting human cells. Mol Ther Nucleic Acids 1:e21

    Article  PubMed Central  PubMed  Google Scholar 

  46. Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kumari S, Borroni V, Chaudhry A, Chanda B, Massol R, Mayor S, Barrantes FJ (2008) Nicotinic acetylcholine receptor is internalized via a Rac-dependent, dynamin-independent endocytic pathway. J Cell Biol 181:1179–1193

    Article  CAS  PubMed  Google Scholar 

  48. Bujny MV, Popoff V, Johannes L, Cullen PJ (2007) The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J Cell Sci 120:2010–2021

    Article  CAS  PubMed  Google Scholar 

  49. Angelides KJ (1981) Fluorescent and photoactivatable fluorescent derivatives of tetrodotoxin to probe the sodium channel of excitable membranes. Biochemistry 20:4107–4118

    Article  CAS  PubMed  Google Scholar 

  50. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science (New York, NY) 317:1749–1753

    Article  CAS  Google Scholar 

  51. Löschberger A, van de Linde S, Dabauvalle M-C, Rieger B, Heilemann M, Krohne G, Sauer M (2012) Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125:570–575

    Article  PubMed  Google Scholar 

  52. Hopwood D (1967) Some aspects of fixation with glutaraldehyde. A biochemical and histochemical comparison of the effects of formaldehyde and glutaraldehyde fixation on various enzymes and glycogen, with a note on penetration of glutaraldehyde into liver. J Anat 101:83–92

    CAS  PubMed  Google Scholar 

  53. Hopwood D (1972) Theoretical and practical aspects of glutaraldehyde fixation. Histochem J 4:267–303

    Article  CAS  PubMed  Google Scholar 

  54. Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. JCB 17:19–58

    Article  CAS  PubMed  Google Scholar 

  55. Tagliaferro P, Tandler CJ, Ramos AJ, Pecci Saavedra J, Brusco A (1997) Immunofluorescence and glutaraldehyde fixation. A new procedure based on the Schiff-quenching method. J Neurosci Methods 77:191–197

    Article  CAS  PubMed  Google Scholar 

  56. Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. JCB 34:207–217

    Article  CAS  PubMed  Google Scholar 

  57. Matsubayashi Y, Iwai L, Kawasaki H (2008) Fluorescent double-labeling with carbocyanine neuronal tracing and immunohistochemistry using a cholesterol-specific detergent digitonin. J Neurosci Methods 174:71–81

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Opazo, F. (2014). Probing Biological Samples in High-Resolution Microscopy: Making Sense of Spots. In: Fornasiero, E., Rizzoli, S. (eds) Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, vol 86. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-983-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-983-3_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-982-6

  • Online ISBN: 978-1-62703-983-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics