Skip to main content

Nonlinear Optics Approaches Towards Subdiffraction Resolution in CARS Imaging

  • Protocol
  • First Online:
Super-Resolution Microscopy Techniques in the Neurosciences

Abstract

In theoretical investigations, we review several nonlinear optical approaches towards subdiffraction-limited resolution in label-free imaging via coherent anti-Stokes Raman scattering (CARS). Using a density matrix model and numerical integration, we investigate various level schemes and combinations of the light fields that induce CARS along with additional control laser fields. As the key to techniques that gain far-field resolution below the diffraction limit, we identify the inhibition of the buildup of vibrational molecular coherence via saturation or depletion of population (Beeker et al. Opt Express 17:22632–22638, 2009) or the generation of Stark broadening and spatially dependent Rabi sideband generation (Beeker et al. Phys Rev A 81(1), 2010). Depending on the coherence and population decay rates offered by a particular molecular energy level scheme, we identify various different regimes. In the first case, where an additional state (called the control state) and a vibrational state are able to rapidly exchange population via incoherent processes, a prepopulation of the upper vibrational state inhibits the buildup of vibrational coherence. With increasing control laser intensity, this suppresses CARS emission via an incoherent, saturation type of nonlinear process. Using an intense, donut-shaped control laser beam, similar to stimulated emission depletion (STED) microscopy, this can suppress CARS emission from all sample locations except within a subdiffraction-sized range around the central node. Scanning the control beams across the sample provides subdiffraction-limited resolution imaging. An alternative, which does not require a rapid exchange of population with the control state, applies a control beam that only partially depletes the vibrational ground state. Thereby, a CARS point spread function containing a subdiffraction-limited component is generated. Subdiffraction images can then be retrieved through deconvolution. Further approaches are based on the coherent, nonlinear, resonant response of the sample. In this case, CARS signal depletion by Stark splitting of the weakly populated upper vibrational state or the observation of spatially dependent Rabi oscillation may increase the resolution beyond the diffraction limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission—stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  PubMed  Google Scholar 

  2. Klar TA et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97(15):8206–8210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  4. Huang B et al (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5(12):1047–1052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. van de Linde S et al (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009

    Article  PubMed  Google Scholar 

  7. Zenobi R (2008) Analytical tools for the nano world. Anal Bioanal Chem 390(1):215–221

    Article  CAS  PubMed  Google Scholar 

  8. Rittweger E et al (2009) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 3(3):144–147

    Article  CAS  Google Scholar 

  9. Wildanger D, Maze JR, Hell SW (2011) Diffraction unlimited all-optical recording of electron spin resonances. Phys Rev Lett 107(1):017601

    Article  PubMed  Google Scholar 

  10. Dyba M, Hell SW (2002) Focal spots of size lambda/23 open up far-field florescence microscopy at 33nm axial resolution. Phys Rev Lett 88(16):163901

    Article  PubMed  Google Scholar 

  11. Andrews JR, Hochstrasser RM, Trommsdorff HP (1981) Vibrational transitions in excited-states of molecules using coherent Stokes Raman-spectroscopy—application to ferrocytochrome-C. Chem Phys 62(1–2):87–101

    Article  CAS  Google Scholar 

  12. Fu Y et al (2006) Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. Opt Express 14(9):3942–3951

    Article  CAS  PubMed  Google Scholar 

  13. Lin CY et al (2011) Picosecond spectral coherent anti-Stokes Raman scattering imaging with principal component analysis of meibomian glands. J Biomed Opt 16(2):021104

    Article  PubMed  Google Scholar 

  14. Nikolaenko A, Krishnamachari VV, Potma EO (2009) Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy. Phys Rev A 79(1):13823

    Article  PubMed Central  PubMed  Google Scholar 

  15. Raghunathan V, Potma EO (2010) Multiplicative and subtractive focal volume engineering in coherent Raman microscopy. J Opt Soc Am A 27(11):2365–2374

    Article  Google Scholar 

  16. Milonni PW, Eberly JH (2010) Lasers physics. Wiley, Hoboken, NJ, xiv, 830p

    Google Scholar 

  17. Beeker WP et al (2010) Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy. Phys Rev A 81(1):012507

    Article  Google Scholar 

  18. Beeker WP et al (2009) A route to sub-diffraction-limited CARS microscopy. Opt Express 17(25):22632–22638

    Article  CAS  PubMed  Google Scholar 

  19. Cleff C et al (2013) Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy. Phys Rev A 87(3): 033830(1)–033830(9)

    Google Scholar 

  20. Gardner JR et al (1993) Suboptical wavelength position measurement of moving atoms using optical-fields. Phys Rev Lett 70(22):3404–3407

    Article  CAS  PubMed  Google Scholar 

  21. Shen YR (1984) Principles of nonlinear optics. Wiley, New York

    Google Scholar 

  22. Deak JC et al (2000) Ultrafast infrared-Raman studies of vibrational energy redistribution in polyatomic liquids. J Raman Spectrosc 31(4):263–274

    Article  CAS  Google Scholar 

  23. Golonzka O et al (2001) Coupling and orientation between anharmonic vibrations characterized with two-dimensional infrared vibrational echo spectroscopy. J Chem Phys 115(23):10814–10828

    Article  CAS  Google Scholar 

  24. Laubereau A et al (1978) Vibrational population lifetimes of polyatomic-molecules in liquids. Chem Phys 31(3):335–344

    Article  CAS  Google Scholar 

  25. Asbury JB et al (2003) Hydrogen bond dynamics probed with ultrafast infrared heterodyne-detected multidimensional vibrational stimulated echoes. Phys Rev Lett 91(23):237402

    Article  PubMed  Google Scholar 

  26. de Vivie-Riedle R, Troppmann U (2007) Femtosecond lasers for quantum information technology. Chem Rev 107(11):5082–5100

    Article  PubMed  Google Scholar 

  27. Wurzer AJ et al (1999) Comprehensive measurement of the S-1 azulene relaxation dynamics and observation of vibrational wavepacket motion. Chem Phys Lett 299(3–4):296–302

    Article  CAS  Google Scholar 

  28. Brion E et al (2007) Universal quantum computation in a neutral-atom decoherence-free subspace. Phys Rev A 75(3):032328

    Article  Google Scholar 

  29. Hein B, Willig KI, Hell SW (2008) Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci U S A 105(38):14271–14276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ventalon C et al (2004) Coherent vibrational climbing in carboxyhemoglobin. Proc Natl Acad Sci U S A 101(36):13216–13220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cleff C et al (2012) Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy. Phys Rev A 86(2):023825(1)–023825(11)

    Google Scholar 

  32. Offerhaus HL (2011) Private communication

    Google Scholar 

  33. Boller KJ, Imamoglu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593–2596

    Article  CAS  PubMed  Google Scholar 

  34. Schouwink P et al (2002) Dependence of Rabi-splitting on the spatial position of the optically active layer in organic microcavities in the strong coupling regime. Chem Phys 285(1):113–120

    Article  CAS  Google Scholar 

  35. Witte T et al (2004) Femtosecond infrared coherent excitation of liquid phase vibrational population distributions (v > 5). Chem Phys Lett 392(1–3):156–161

    Article  CAS  Google Scholar 

  36. Graener H, Laubereau A (1987) Ultrafast vibrational-energy transfer of polyethylene investigated with picosecond laser-pulses. Chem Phys Lett 133(5):378–380

    Article  CAS  Google Scholar 

  37. Laubereau A, Kaiser W (1978) Vibrational dynamics of liquids and solids investigated by picosecond light-pulses. Rev Mod Phys 50(3):607–665

    Article  CAS  Google Scholar 

  38. Fendt A, Fischer SF, Kaiser W (1981) Vibrational lifetime and Fermi resonance in polyatomic-molecules. Chem Phys 57(1–2):55–64

    Article  CAS  Google Scholar 

  39. Graener H, Laubereau A (1982) New results on vibrational population decay in simple liquids. Appl Phys B 29(3):213–218

    Article  Google Scholar 

  40. Okamoto H, Yoshihara K (1991) Femtosecond time-resolved coherent Raman-scattering from beta-carotene in solution—ultrahigh frequency (11-Thz) beating phenomenon and subpicosecond vibrational-relaxation. Chem Phys Lett 177(6):568–572

    Article  CAS  Google Scholar 

  41. Ambroseo JR, Hochstrasser RM (1988) Pathways of relaxation of the N-H stretching vibration of pyrrole in liquids. J Chem Phys 89(9):5956–5957

    Article  CAS  Google Scholar 

  42. Heilweil EJ, Cavanagh RR, Stephenson JC (1987) Population relaxation of Co(V = 1) vibrations in solution phase metal-carbonyl-complexes. Chem Phys Lett 134(2):181–188

    Article  CAS  Google Scholar 

  43. Tokmakoff A, Sauter B, Fayer MD (1994) Temperature-dependent vibrational-relaxation in polyatomic liquids—picosecond infrared pump-probe experiments. J Chem Phys 100(12):9035–9043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Boller, KJ. et al. (2014). Nonlinear Optics Approaches Towards Subdiffraction Resolution in CARS Imaging. In: Fornasiero, E., Rizzoli, S. (eds) Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, vol 86. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-983-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-983-3_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-982-6

  • Online ISBN: 978-1-62703-983-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics