Skip to main content

Quantum Mechanical Methods for the Investigation of Metalloproteins and Related Bioinorganic Compounds

  • Protocol
  • First Online:
Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1122))

Abstract

It is well known that transition metal ions are often bound to proteins, conveying very specific functional properties. In fact, metalloproteins play crucial biological roles in the transport and activation of small molecules such as H2, O2, and N2, as well as in several other biochemical processes. However, even if the presence of transition metals in the active site of proteins allows a very rich biochemistry, the experimental disclosure of structure–activity relationships in metalloproteins is generally difficult exactly because of the presence of transition metals, which are intrinsically characterized by a very versatile and often elusive chemistry. For this reason, computational methods are becoming very popular tools in the characterization of metalloproteins. In particular, since computing power is becoming less and less expensive, due to the continuous technological development of CPUs, the computational tools suited to investigate metalloproteins are becoming more accessible and therefore more commonly used also in molecular biology and biochemistry laboratories. Here, we present the main procedures and computational methods based on quantum mechanics, which are commonly used to study the structural, electronic, and reactivity properties of metalloproteins and related bioinspired compounds, with a specific focus on the practical and technical aspects that must be generally tackled to properly study such biomolecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rokob TA, Srnec M, Rulisek L (2012) Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives. Dalton Trans 41:5754–5768

    CAS  PubMed  Google Scholar 

  2. Acevedo O, Jorgensen WL (2010) Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions. Accounts Chem Res 43:142–151

    CAS  Google Scholar 

  3. Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11:10757

    CAS  PubMed  Google Scholar 

  4. Deeth RJ (2004) Recent developments in computational bioinorganic chemistry. Principles and applications of density functional theory in inorganic chemistry II. Springer, Berlin, pp 37–70

    Google Scholar 

  5. Neese F (2006) A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry. J Biol Inorg Chem 11:702–711

    CAS  PubMed  Google Scholar 

  6. Siegbahn PEM, Borowski T (2006) Modeling enzymatic reactions involving transition metals. Acc Chem Res 39:729–738

    CAS  PubMed  Google Scholar 

  7. Noodleman L, Han W-G (2006) Structure, redox, pK a, spin. A golden tetrad for understanding metalloenzyme energetics and reaction pathways. J Biol Inorg Chem 11:674–694

    CAS  PubMed  Google Scholar 

  8. Bertini L, Bruschi M, De Gioa L, Fantucci P, Greco C, Zampella G (2007) Quantum chemical investigations of reaction paths of metalloenzymes and biomimetic models – the hydrogenase example. Topics in Current Chemistry 268:1

    Google Scholar 

  9. Ranaghan KE, Mulholland AJ (2010) Investigations of enzyme-catalysed reactions with combined quantum mechanics/molecular mechanics (QM/MM) methods. Int Rev Phys Chem 29:65–133

    CAS  Google Scholar 

  10. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980

    CAS  Google Scholar 

  11. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Google Scholar 

  12. Dirac PAM (1930) Note on exchange phenomena in the thomas atom. Math Proc Camb Phil Soc 26:376–385

    CAS  Google Scholar 

  13. Slater JC (1951) Magnetic effects and the Hartree-Fock equation. Phys Rev 82:538–541

    CAS  Google Scholar 

  14. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    CAS  PubMed  Google Scholar 

  15. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824

    Google Scholar 

  16. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  17. Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic structure of solids ’91. Akademie, Berlin

    Google Scholar 

  18. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  PubMed  Google Scholar 

  19. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675

    CAS  Google Scholar 

  20. Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE, Csonka GI (2005) Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys 123:062201–062209

    Google Scholar 

  21. Becke AD (1998) A new inhomogeneity parameter in density-functional theory. J Chem Phys 109:2092–2098

    CAS  Google Scholar 

  22. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    CAS  Google Scholar 

  23. Adamo C, Barone V (1997) Toward reliable adiabatic connection models free from adjustable parameters. Chem Phys Lett 274:242–250

    CAS  Google Scholar 

  24. Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J Chem Phys 110:5029–5036

    CAS  Google Scholar 

  25. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) Adiabatic connection for kinetics. J Phys Chem A 104:4811–4815

    CAS  Google Scholar 

  26. Jensen F (2006) Introduction to computational chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  27. Cramer CJ (2006) Essentials of computational chemistry: theories and models, 2nd edn. Wiley, West Sussex

    Google Scholar 

  28. Barone V (1996) Structure, magnetic properties and reactivities of open-shell species from density functional and self-consistent hybrid methods. In: Chong DP (ed) Recent advances in density functional methods part I. World Scientific Publishing Company, Singapore, pp 287–334

    Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 (Revision A.1); Gaussian, Inc., Wallingford CT.

    Google Scholar 

  30. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99:391–403

    CAS  Google Scholar 

  31. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Google Scholar 

  32. Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer TH, Fonseca Guerra C, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Ros P, Schipper PRT, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL. DF2012, SCM, theoretical chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.

  33. Schmidt MW, Baldridge KK, Boatz JA et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    CAS  Google Scholar 

  34. Gordon MS, Schmidt MW (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years, Elsevier, Amsterdam, p 1167

    Google Scholar 

  35. Karlström G, Lindh R, Malmqvist P-Å et al (2003) MOLCAS: a program package for computational chemistry. Comput Mater Sci 28:222–239

    Google Scholar 

  36. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162:165–169

    CAS  Google Scholar 

  37. Helgaker T, Jensen HJA, Jørgensen P, Olsen J, Ruud K, Agren H, Auer AA, Bak KL, Bakken V, Christiansen O, Coriani S, Dahle P, Dalskov EK, Enevoldsen T, Fernandez B, Hattig C, Hald K, Halkier A, Heiberg H, Hettema H, Jonsson D, Kirpekar S, Kobayashi R, Koch H, Mikkelsen KV, Norman P, Packer MJ, Pedersen TB, Ruden TA, Salek P, Sanchez A, Saue T, Sauer SPA, Schimmelpfennig B, Sylvester-Hvid KO, Taylor PR, Vahtras O. Dalton, a molecular electronic structure program, Release 2.0, 2005.

    Google Scholar 

  38. Petrenko T, Kossmann S, Neese F (2011) Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization. J Chem Phys. doi:10.1063/1.3533441

    PubMed  Google Scholar 

  39. Dziedzic J, Fox SJ, Fox T, Tautermann CS, Skylaris C-K (2013) Large-scale DFT calculations in implicit solvent – a case study on the T4 lysozyme L99A/M102Q protein. Int J Quant Chem 113:771–785

    CAS  Google Scholar 

  40. Siegbahn PEM, Himo F (2009) Recent developments of the quantum chemical cluster approach for modeling enzyme reactions. J Biol Inorg Chem 14:643–651

    CAS  PubMed  Google Scholar 

  41. Sousa SF, Fernandes PA, Ramos MJ (2012) Computational enzymatic catalysis – clarifying enzymatic mechanisms with the help of computers. Phys Chem Chem Phys 14:12431–12441

    CAS  PubMed  Google Scholar 

  42. Nemukhin AV, Grigorenko BL, Lushchekina SV, Varfolomeev SD (2012) Quantum chemical modelling in the research of molecular mechanisms of enzymatic catalysis. Russ Chem Rev 81:1011–1025

    Google Scholar 

  43. Siegbahn PEM, Himo F (2011) The quantum chemical cluster approach for modeling enzyme reactions. Wiley Interdiscip Rev Comput Mol Sci 1:323–336

    CAS  Google Scholar 

  44. Marino T, Russo N, Toscano M (2005) A comparative study of the catalytic mechanisms of the zinc and cadmium containing carbonic anhydrase. J Am Chem Soc 127:4242–4253

    CAS  PubMed  Google Scholar 

  45. Leopoldini M, Marino T, del Michelini MC, Rivalta I, Russo N, Sicilia E, Toscano M (2007) The role of quantum chemistry in the elucidation of the elementary mechanisms of catalytic processes: from atoms, to surfaces, to enzymes. Theor Chem Acc 117:765–779

    CAS  Google Scholar 

  46. Amata O, Marino T, Russo N, Toscano M (2011) A proposal for mitochondrial processing peptidase catalytic mechanism. J Am Chem Soc 133:17824–17831

    CAS  PubMed  Google Scholar 

  47. Alberto ME, Marino T, Russo N, Sicilia E, Toscano M (2012) The performance of density functional based methods in the description of selected biological systems and processes. Phys Chem Chem Phys 14:14943–14953

    CAS  PubMed  Google Scholar 

  48. Klamt A, Schuurmann G (1993) Cosmo – a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc-Perkin Trans 2:799–805

    Google Scholar 

  49. Klamt A (1995) Conductor-like screening model for real solvents – a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235

    CAS  Google Scholar 

  50. Andzelm J, Kolmel C, Klamt A (1995) Incorporation of solvent effects into density-functional calculations of molecular-energies and geometries. J Chem Phys 103:9312–9320

    CAS  Google Scholar 

  51. Klamt A, Jonas V (1996) Treatment of the outlying charge in continuum solvation models. J Chem Phys 105:9972–9981

    CAS  Google Scholar 

  52. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    CAS  Google Scholar 

  53. Cossi M, Barone V, Mennucci B, Tomasi J (1998) Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem Phys Lett 286:253–260

    CAS  Google Scholar 

  54. Rega N, Cossi M, Barone V, Pomelli CS, Tomasi J (1999) Toward an effective and reliable representation of solvent effects in the study of biochemical systems. Int J Quantum Chem 73:219–227

    CAS  Google Scholar 

  55. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    CAS  PubMed  Google Scholar 

  56. Tomasi J, Persico M (1994) Molecular-interactions in solution – an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094

    CAS  Google Scholar 

  57. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    CAS  PubMed  Google Scholar 

  58. Chen S-L, Fang W-H, Himo F (2009) Reaction mechanism of the binuclear zinc enzyme glyoxalase II – a theoretical study. J Inorg Biochem 103:274–281

    CAS  PubMed  Google Scholar 

  59. Liao R-Z, Himo F, Yu J-G, Liu R-Z (2010) Dipeptide hydrolysis by the dinuclear zinc enzyme human renal dipeptidase: mechanistic insights from DFT calculations. J Inorg Biochem 104:37–46

    CAS  PubMed  Google Scholar 

  60. Sousa SF, Fernandes PA, Ramos MJ (2009) The search for the mechanism of the reaction catalyzed by farnesyltransferase. Chem Eur J 15:4243–4247

    CAS  PubMed  Google Scholar 

  61. Amata O, Marino T, Russo N, Toscano M (2011) Catalytic activity of a zeta-class zinc and cadmium containing carbonic anhydrase. Compared work mechanisms. Phys Chem Chem Phys 13:3468–3477

    CAS  PubMed  Google Scholar 

  62. Sevastik R, Himo F (2007) Quantum chemical modeling of enzymatic reactions: the case of 4-oxalocrotonate tautomerase. Bioorganic Chem 35:444–457

    CAS  Google Scholar 

  63. Hopmann KH, Himo F (2008) Quantum chemical modeling of the dehalogenation reaction of haloalcohol dehalogenase. J Chem Theor Comput 4:1129–1137

    CAS  Google Scholar 

  64. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions – dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J Mol Biol 103:227–249

    CAS  PubMed  Google Scholar 

  65. Ranaghan KE, Ridder L, Szefczyk B, Sokalski WA, Hermann JC, Mulholland AJ (2003) Insights into enzyme catalysis from QM/MM modelling: transition state stabilization in chorismate mutase. Mol Phys 101:2695–2714

    CAS  Google Scholar 

  66. Senn HM, Thiel W (2007) QM/MM studies of enzymes. Curr Opin Chem Biol 11:182–187

    CAS  PubMed  Google Scholar 

  67. Olsson MHM, Parson WW, Warshel A (2006) Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chem Rev 106:1737–1756

    CAS  PubMed  Google Scholar 

  68. Warshel A (2003) Computer simulations of enzyme catalysis: methods, progress, and insights. Annu Rev Biophys Biomolec Struct 32:425–443

    CAS  Google Scholar 

  69. Claeyssens F, Harvey JN, Manby FR, Mata RA, Mulholland AJ, Ranaghan KE, Schuetz M, Thiel S, Thiel W, Werner H-J (2006) High-accuracy computation of reaction barriers in enzymes. Angew Chem Int Edit 45:6856–6859

    CAS  Google Scholar 

  70. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    CAS  Google Scholar 

  71. Duan Y, Wu C, Chowdhury S et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    CAS  PubMed  Google Scholar 

  72. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    CAS  Google Scholar 

  73. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856

    CAS  PubMed  Google Scholar 

  74. Jorgensen WL, Tirado-Rives J (1988) The OPLS (optimized potentials for liquid simulations) potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    CAS  Google Scholar 

  75. Fox SJ, Pittock C, Fox T, Tautermann CS, Malcolm N, Skylaris C-K (2011) Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules. J Chem Phys 135:224107–224107–13.

    Google Scholar 

  76. Wallrapp FH, Guallar V (2011) Mixed quantum mechanics and molecular mechanics methods: looking inside proteins. Wiley Interdiscip Rev Comput Mol Sci 1:315–322

    CAS  Google Scholar 

  77. Hagiwara Y, Tateno M (2010) Recent advances in jointed quantum mechanics and molecular mechanics calculations of biological macromolecules: schemes and applications coupled to ab initio calculations. J Phys Condes Matter. doi:10.1088/0953-8984/22/41/413101

    Google Scholar 

  78. Zhang R, Lev B, Cuervo JE, Noskov SY, Salahub DR (2010) A guide to QM/MM methodology and applications. In: Sabin JR, Brandas E, Canuto S (eds) Advances in quantum chemistry, vol 59, Combining quantum mechanics and molecular mechanics – some recent progresses in Qm/Mm methods. Elsevier Academic Press Inc, San Diego, pp 353–400

    Google Scholar 

  79. Hirao H, Morokuma K (2011) Recent progress in the theoretical studies of structure, function, and reaction of biological molecules. Yakugaku Zasshi J Pharm Soc Jpn 131:1151–1161

    CAS  Google Scholar 

  80. Ryde U (1996) The coordination of the catalytic zinc in alcohol dehydrogenase studied by combined quantum-chemical and molecular mechanics calculations. J Comput Aided Mol Des 10:153–164

    CAS  PubMed  Google Scholar 

  81. Seminario JM (1996) Calculation of intramolecular force fields from second-derivative tensors. Int J Quant Chem 60:1271–1277

    Google Scholar 

  82. Reuter N, Dejaegere A, Maigret B, Karplus M (2000) Frontier bonds in QM/MM methods: a comparison of different approaches. J Phys Chem A 104:1720–1735

    CAS  Google Scholar 

  83. Olsson MHM, Hong G, Warshel A (2003) Frozen density functional free energy simulations of redox proteins: computational studies of the reduction potential of plastocyanin and rusticyanin. J Am Chem Soc 125:5025–5039

    CAS  PubMed  Google Scholar 

  84. Rod TH, Ryde U (2005) Quantum mechanical free energy barrier for an enzymatic reaction. Phys Rev Lett 94:138302

    PubMed  Google Scholar 

  85. Reiher M, Salomon O, Hess BA (2001) Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theor Chem Acc 107:48–55

    CAS  Google Scholar 

  86. Becke A (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  87. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    CAS  PubMed  Google Scholar 

  88. Siegbahn PEM, Blomberg MRA (2000) Transition-metal systems in biochemistry studied by high-accuracy quantum chemical methods. Chem Rev 100:421–437

    CAS  PubMed  Google Scholar 

  89. Reiher M (2002) Theoretical study of the Fe(phen)(2)(NCS)(2) spin-crossover complex with reparametrized density functionals. Inorg Chem 41:6928–6935

    CAS  PubMed  Google Scholar 

  90. Wolny JA, Paulsen H, Trautwein AX, Schuenemann V (2009) Density functional theory calculations and vibrational spectroscopy on iron spin-crossover compounds. Coord Chem Rev 253:2423–2431

    CAS  Google Scholar 

  91. Heisenberg W (1928) Z Phys 49:619

    CAS  Google Scholar 

  92. Dirac PAM (1929) Proc R Soc London, Ser A 123:714

    CAS  Google Scholar 

  93. Van Vleck JH (1945) Rev Mod Phys 17:27

    Google Scholar 

  94. Noodleman L (1981) Valence bond description of anti-ferromagnetic coupling in transition-metal dimers. J Chem Phys 74:5737–5743

    CAS  Google Scholar 

  95. Noodleman L, Norman J (1979) X-alpha valence bond theory of weak electronic coupling – application to the low-lying states of Mo2cl84. J Chem Phys 70:4903–4906

    CAS  Google Scholar 

  96. Noodleman L, Peng C, Case D, Mouesca J (1995) Orbital interactions, electron delocalization and spin coupling in iron-sulfur clusters. Coord Chem Rev 144:199–244

    CAS  Google Scholar 

  97. Mouesca J, Chen J, Noodleman L, Bashford D, Case D (1994) Density-functional Poisson-Boltzmann calculations of redox potentials for iron-sulfur clusters. J Am Chem Soc 116:11898–11914

    CAS  Google Scholar 

  98. Torres RA, Lovell T, Noodleman L, Case DA (2003) Density functional-and reduction potential calculations of Fe(4)S(4) clusters. J Am Chem Soc 125:1923–1936

    CAS  PubMed  Google Scholar 

  99. Noodleman L, Norman J, Osborne J, Aizman A, Case D (1985) Models for ferredoxins – electronic-structures of iron sulfur clusters with one, 2, and 4 iron atoms. J Am Chem Soc 107:3418–3426

    CAS  Google Scholar 

  100. Aizman A, Case D (1982) Electronic-structure calculations on active-site models for 4-Fe, 4-S iron sulfur proteins. J Am Chem Soc 104:3269–3279

    CAS  Google Scholar 

  101. Papaefthymiou V, Millar M, Munck E (1986) Mossbauer and electron-paramagnetic-Res studies of a synthetic analog for the Fe4s4 core of oxidized and reduced high-potential iron proteins. Inorg Chem 25:3010–3014

    CAS  Google Scholar 

  102. Carney M, Papaefthymiou G, Spartalian K, Frankel R, Holm R (1988) Ground spin state variability in (fe4s4(sr)4)3- – synthetic analogs of the reduced clusters in ferredoxins and other iron sulfur proteins – cases of extreme sensitivity of electronic state and structure to extrinsic factors. J Am Chem Soc 110:6084–6095

    CAS  PubMed  Google Scholar 

  103. Auric P, Gaillard J, Meyer J, Moulis J (1987) Analysis of the high-spin states of the 2(4fe-4se) + ferredoxin from Clostridium pasteurianum by Mossbauer spectroscopy. Biochem J 242:525–530

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Champion P, Munck E, Debrunner P, Moss T, Lipscomb J, Gunsalus I (1975) Magnetic-susceptibility of reduced cytochrome P-450cam. Biochimica Et Biophysica Acta 376:579–582

    CAS  PubMed  Google Scholar 

  105. Tang S, Spiro T, Antanaitis C, Moss T, Holm R, Herskovits T, Mortensen L (1975) Resonance Raman spectroscopic evidence for structural variation among bacterial ferredoxin, Hipip, and Fe4s4(sch2ph)42-. Biochem Biophys Res Commun 62:1–6

    CAS  PubMed  Google Scholar 

  106. Middleton P, Dickson D, Johnson C, Rush J (1980) Interpretation of the Mossbauer spectra of the high-potential iron protein from Chromatium. Eur J Biochem 104:289–296

    CAS  PubMed  Google Scholar 

  107. Middleton P, Dickson D, Johnson C, Rush J (1978) Interpretation of Mossbauer spectra of 4-iron ferredoxin from Bacillus stearothermophilus. Eur J Biochem 88:135–141

    CAS  PubMed  Google Scholar 

  108. Blondin G, Girerd J (1990) Interplay of electron exchange and electron-transfer in metal polynuclear complexes in proteins or chemical-models. Chem Rev 90:1359–1376

    CAS  Google Scholar 

  109. Noodleman L, Baerends E (1984) Electronic-structure, magnetic-properties, electron-spin-resonance, and optical-spectra for 2-Fe ferredoxin models by Lcao-X-alpha valence bond theory. J Am Chem Soc 106:2316–2327

    CAS  Google Scholar 

  110. Papaefthymiou V, Girerd J, Moura I, Moura J, Munck E (1987) Mossbauer study of D-gigas ferredoxin-ii and spin-coupling model for the Fe3s4 cluster with valence delocalization. J Am Chem Soc 109:4703–4710

    CAS  Google Scholar 

  111. Noodleman L, Case D (1992) Density-functional theory of spin polarization and spin coupling in iron-sulfur clusters. Adv Inorg Chem 38:423

    CAS  Google Scholar 

  112. Borshch S, Bominaar E, Blondin G, Girerd J (1993) Double exchange and vibronic coupling in mixed-valence systems – origin. J Am Chem Soc 115:5155–5168

    CAS  Google Scholar 

  113. Pereira AS, Tavares P, Moura I, Moura JJG, Huynh BH (2001) Mossbauer characterization of the iron-sulfur clusters in Desulfovibrio vulgaris hydrogenase. J Am Chem Soc 123:2771–2782

    CAS  PubMed  Google Scholar 

  114. Popescu CV, Munck E (1999) Electronic structure of the H cluster in (Fe)-hydrogenases. J Am Chem Soc 121:7877–7884

    CAS  Google Scholar 

  115. Bruschi M, Greco C, Fantucci P, De Gioia L (2008) Structural and electronic properties of the (FeFe) hydrogenase H-cluster in different redox and protonation states. A DFT investigation. Inorg Chem 47:6056–6071

    CAS  PubMed  Google Scholar 

  116. Fiedler AT, Brunold TC (2005) Computational studies of the H-cluster of Fe-only hydrogenases: geometric, electronic, and magnetic properties and their dependence on the (Fe(4)S(4)) cubane. Inorg Chem 44:9322–9334

    CAS  PubMed  Google Scholar 

  117. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858

    CAS  PubMed  Google Scholar 

  118. Zampella G, Neupane KP, De Gioia L, Pecoraro VL (2012) The importance of stereochemically active lone pairs for influencing PbII and AsIII protein binding. Chem Eur J 18:2040–2050

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Johnson MK, Rees DC, Adams MWW (1996) Tungstoenzymes. Chem Rev 96:2817–2840

    CAS  PubMed  Google Scholar 

  120. Huheey JE (2006) Inorganic chemistry: principles of structure and reactivity. Pearson Education

    Google Scholar 

  121. Zampella G, Fantucci P, De Gioia L (2009) DFT characterization of the reaction pathways for terminal- to μ-hydride isomerisation in synthetic models of the (FeFe)-hydrogenase active site. Chem Commun 46:8824–8826

    Google Scholar 

  122. Bruschi M, Zampella G, Fantucci P, De Gioia L (2005) DFT investigations of models related to the active site of (NiFe) and (Fe) hydrogenases. Coord Chem Rev 249:1620–1640

    CAS  Google Scholar 

  123. Chen JL, Noodleman L, Case DA, Bashford D (1994) Incorporating solvation effects into density functional electronic structure calculations. J Phys Chem 98:11059–11068

    CAS  Google Scholar 

  124. Connors KA (1990) Chemical kinetics: the study of reaction rates in solution. Wiley, New York

    Google Scholar 

  125. Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267

    CAS  Google Scholar 

  126. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167

    CAS  PubMed  Google Scholar 

  127. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241

    CAS  Google Scholar 

  128. Ziegler T (1991) Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem Rev 91:651–667

    CAS  Google Scholar 

  129. Cramer CJ (2005) Essentials of computational chemistry: theories and models. Wiley, New York

    Google Scholar 

  130. Koch PDW, Holthausen DMC (2001) A chemist’s guide to density functional theory, 2nd edn.

    Google Scholar 

  131. Becke AD (2000) Simulation of delocalized exchange by local density functionals. J Chem Phys 112:4020–4026

    CAS  Google Scholar 

  132. Siegbahn PEM, Borowski T (2006) Modeling enzymatic reactions involving transition metals. Accounts Chem Res 39:729–738

    CAS  Google Scholar 

  133. Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894

    CAS  Google Scholar 

  134. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    CAS  Google Scholar 

  135. Leach AR (2001) Molecular modelling: principles and applications. Pearson Education

    Google Scholar 

  136. Hughes TF, Friesner RA (2012) Development of accurate DFT methods for computing redox potentials of transition metal complexes: results for model complexes and application to cytochrome P450. J Chem Theory Comput 8:442–459

    CAS  Google Scholar 

  137. Moens J, De Proft F, Geerlings P (2010) A density functional theory study on ligand additive effects on redox potentials. Phys Chem Chem Phys 12:13174–13181

    CAS  PubMed  Google Scholar 

  138. Galstyan A, Knapp E-W (2009) Accurate redox potentials of mononuclear iron, manganese, and nickel model complexes. J Comput Chem 30:203–211

    CAS  PubMed  Google Scholar 

  139. Izutsu K (2009) Electrochemistry in nonaqueous solutions. Wiley, New York. doi: 10.1002/3527600655

  140. Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) Absolute pKa determinations for substituted phenols. J Am Chem Soc 124:6421–6427

    CAS  PubMed  Google Scholar 

  141. Bartmess JE (1994) Thermodynamics of the electron and the proton. J Phys Chem 98:6420–6424

    CAS  Google Scholar 

  142. Namazian M, Coote ML (2007) Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile. J Phys Chem A 111:7227–7232

    CAS  PubMed  Google Scholar 

  143. Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G (2005) Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev 105:2647–2694

    PubMed  Google Scholar 

  144. Rose MJ, Betterley NM, Mascharak PK (2009) Thiolate S-oxygenation controls nitric oxide (NO) photolability of a synthetic iron nitrile hydratase (Fe-NHase) model derived from mixed carboxamide/thiolate ligand. J Am Chem Soc 131:8340–8341

    CAS  PubMed  Google Scholar 

  145. Dunietz BD, Dreuw A, Head-Gordon M (2003) Initial steps of the photodissociation of the CO ligated heme group. J Phys Chem B 107:5623–5629

    CAS  Google Scholar 

  146. Chen Z, Lemon BJ, Huang S, Swartz DJ, Peters JW, Bagley KA (2002) Infrared studies of the CO-inhibited form of the Fe-only hydrogenase from clostridium pasteurianum i: examination of its light sensitivity at cryogenic temperatures. Biochemistry 41:2036–2043

    CAS  PubMed  Google Scholar 

  147. Lodowski P, Jaworska M, Andruniów T, Kumar M, Kozlowski PM (2009) Photodissociation of Co−C bond in methyl- and ethylcobalamin: an insight from TD-DFT calculations. J Phys Chem B 113:6898–6909

    CAS  PubMed  Google Scholar 

  148. Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037

    CAS  PubMed  Google Scholar 

  149. Bringmann G, Bruhn T, Maksimenka K, Hemberger Y (2009) The assignment of absolute stereostructures through quantum chemical circular dichroism calculations. Eur J Org Chem 2009:2717–2727

    Google Scholar 

  150. Santoro F, Lami A, Improta R, Barone V (2007) Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperature in the gas phase and in solution. J Chem Phys 126:184102–184111

    PubMed  Google Scholar 

  151. Bertini L, Greco C, De Gioia L, Fantucci P (2009) DFT/TDDFT exploration of the potential energy surfaces of the ground state and excited states of Fe2(S2C3H6)(CO)6: a simple functional model of the (FeFe) hydrogenase active site. J Phys Chem A 113:5657–5670

    CAS  PubMed  Google Scholar 

  152. Dyall KG, Faegri K (2007) Introduction to relativistic quantum chemistry. Oxfrod University Press, New York, USA

    Google Scholar 

  153. Almlöf J, Gropen O (1996) In: Lipkowitz KB, Boyd DB (eds) Relativistic effects in chemistry. VCH, Weinheim, Germany, pp 203–244

    Google Scholar 

  154. Dolg M, Stoll H, Preuss H (1989) Energy‐adjusted ab initio pseudopotentials for the rare earth elements. J Chem Phys 90:1730–1734

    CAS  Google Scholar 

  155. Cundari TR, Stevens WJ (1993) Effective core potential methods for the lanthanides. J Chem Phys 98:5555–5565

    CAS  Google Scholar 

  156. Ross RB, Gayen S, Ermler WC (1994) Ab initio relativistic effective potentials with spin–orbit operators V. Ce through Lu. J Chem Phys 100:8145–8155

    CAS  Google Scholar 

  157. Dolg M, Stoll H, Preuss H (1989) Energy-adjusted pseudopotentials for the rare earth elements. Theor Chim Acta 75:173–194

    CAS  Google Scholar 

  158. Merbach AE, Toth E (2001) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester, UK

    Google Scholar 

  159. Davidson G, Choudhury SB, Gu ZJ, Bose K, Roseboom W, Albracht SPJ, Maroney MJ (2000) Structural examination of the nickel site in Chromatium vinosum hydrogenase: redox state oscillations and structural changes accompanying reductive activation and CO binding. Biochemistry 39:7468–7479

    CAS  PubMed  Google Scholar 

  160. Fan HJ, Hall MB (2001) Recent theoretical predictions of the active site for the observed forms in the catalytic cycle of Ni-Fe hydrogenase. J Biol Inorg Chem 6:467–473

    CAS  PubMed  Google Scholar 

  161. Stein M, Lubitz W (2002) Quantum chemical calculations of (NiFe) hydrogenase. Curr Opin Chem Biol 6:243–249

    CAS  PubMed  Google Scholar 

  162. Dole F, Fournel A, Magro V, Hatchikian EC, Bertrand P, Guigliarelli B (1997) Nature and electronic structure of the Ni-X dinuclear center of Desulfovibrio gigas hydrogenase. Implications for the enzymatic mechanism. Biochemistry 36:7847–7854

    CAS  PubMed  Google Scholar 

  163. Wang C, Franco R, Moura J, Moura I, Day E (1992) The Nickel site in active desulfovibrio-baculatus (nifese) hydrogenase. J Biol Chem 267:7378–7380

    CAS  PubMed  Google Scholar 

  164. Stein M, Lubitz W (2001) DFT calculations of the electronic structure of the paramagnetic states Ni-A, Ni-B and Ni-C of (NiFe) hydrogenase. Phys Chem Chem Phys 3:2668–2675

    CAS  Google Scholar 

  165. De Gioia L, Fantucci P, Guigliarelli B, Bertrand P (1999) Ab initio investigation of the structural and electronic differences between active-site models of (NiFe) and (NiFeSe) hydrogenases. Int J Quant Chem 73:187–195

    Google Scholar 

  166. De Gioia L, Fantucci P, Guigliarelli B, Bertrand P (1999) Ni-Fe hydrogenases: a density functional theory study of active site models. Inorg Chem 38:2658–2662

    Google Scholar 

  167. Volbeda A, Charon M, Piras C, Hatchikian E, Frey M, Fontecillacamps J (1995) Crystal-structure of the nickel-iron hydrogenase from Desulfovibrio-gigas. Nature 373:580–587

    CAS  PubMed  Google Scholar 

  168. Wang HX, Ralston CY, Patil DS et al (2000) Nickel L-edge soft X-ray spectroscopy of nickel-iron hydrogenases and model compounds – Evidence for high-spin nickel(II) in the active enzyme. J Am Chem Soc 122:10544–10552

    CAS  Google Scholar 

  169. Khangulov SV, Gladyshev VN, Dismukes GC, Stadtman TC (1998) Selenium-containing formate dehydrogenase H from Escherichia coli: a molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer. Biochemistry 37:3518–3528

    CAS  PubMed  Google Scholar 

  170. Tiberti M, Papaleo E, Russo N, De Gioia L, Zampella G (2012) Evidence for the formation of a Mo-H intermediate in the catalytic cycle of formate dehydrogenase. Inorg Chem 51:8331–8339

    CAS  PubMed  Google Scholar 

  171. Lewin JL, Heppner DE, Cramer CJ (2007) Validation of density functional modeling protocols on experimental bis(μ-oxo)/μ-η2:η2-peroxo dicopper equilibria. J Biol Inorg Chem 12:1221–1234

    CAS  PubMed  Google Scholar 

  172. Schultz NE, Zhao Y, Truhlar DG (2005) Density functionals for inorganometallic and organometallic chemistry. J Phys Chem A 109:11127–11143

    CAS  PubMed  Google Scholar 

  173. Baerends EJ, Ellis DE, Ros P (1973) Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure. Chem Phys 2:41–51

    CAS  Google Scholar 

  174. Dunlap BI, Connolly JWD, Sabin JR (1979) On some approximations in applications of Xα theory. J Chem Phys 71:3396–3402

    CAS  Google Scholar 

  175. Vahtras O, Almlöf J, Feyereisen MW (1993) Integral approximations for LCAO-SCF calculations. Chem Phys Lett 213:514–518

    CAS  Google Scholar 

  176. Jacquemin D, Mennucci B, Adamo C (2011) Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments. Phys Chem Chem Phys 13:16987–16998

    CAS  PubMed  Google Scholar 

  177. Adamo C, Barone V (2000) Inexpensive and accurate predictions of optical excitations in transition-metal complexes: the TDDFT/PBE0 route. Theor Chem Acc 105:169–172

    CAS  Google Scholar 

  178. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124:094107–094115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca De Gioia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bertini, L. et al. (2014). Quantum Mechanical Methods for the Investigation of Metalloproteins and Related Bioinorganic Compounds. In: Fontecilla-Camps, J., Nicolet, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1122. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-794-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-794-5_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-793-8

  • Online ISBN: 978-1-62703-794-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics