Skip to main content

Mössbauer Spectroscopy

  • Protocol
  • First Online:
Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1122))

Abstract

Given its ability to detect all iron centers, to identify their electronic structures, and to quantify the ratios of the different iron forms present in a sample, many researchers turn to Mössbauer spectroscopy when wanting to address structural and mechanistic questions involving iron proteins. Yet, this technique applied to biochemistry is provided by only a few dedicated teams in the world. Technical difficulties ranging from sample preparation to data analysis and interpretation make necessary the collaboration between biochemists and Mössbauer spectroscopists. This chapter will be confined to iron Mössbauer. It will focus on giving biologists and biochemists the keys to understand what essential information Mössbauer spectroscopy can yield, and how to engage in successful collaborations with spectroscopists. After introducing the basic principles of a Mössbauer experiment, we will describe first how to prepare a suitable Mössbauer sample, then how this technique is applied to the identification of different iron species inside proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gütlich P, Bill E, Trautwein A (2011) Mössbauer spectroscopy and transition metal chemistry: fundamentals and application. Springer, Berlin

    Book  Google Scholar 

  2. Schunemann V, Winkler H (2000) Structure and dynamics of biomolecules studied by Mossbauer spectroscopy. Rep Prog Phys 63:263–353

    Article  CAS  Google Scholar 

  3. Debrunner PG, Dwivedi A, Pederson T (1979) Recoilless fraction of iron proteins in frozen solution. J Phys Colloques 40:531–533

    Google Scholar 

  4. Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Muller J, Lippard SJ (2001) Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew Chem Int Ed 40:2782–2807

    Article  CAS  Google Scholar 

  5. Fox BG, Hendrich MP, Surerus KK, Andersson KK, Froland WA, Lipscomb JD, Munck E (1993) Mossbauer, Epr, and Endor studies of the hydroxylase and reductase components of methane monooxygenase from methylosinus-trichosporium Ob3b. J Am Chem Soc 115:3688–3701

    Article  CAS  Google Scholar 

  6. Murray LJ, Garcia-Serres R, Naik S, Huynh BH, Lippard SJ (2006) Dioxygen activation at non-heme diiron centers: characterization of intermediates in a mutant form of toluene/o-xylene monooxygenase hydroxylase. J Am Chem Soc 128:7458–7459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Yun D, Garcia-Serres R, Chicalese BM, An YH, Huynh BH, Bollinger JM (2007) (mu-1,2-peroxo)diiron(III/III) complex as a precursor to the Diiron(III/IV) intermediate X in the assembly of the iron-radical cofactor of ribonucleotide reductase from mouse. Biochemistry 46:1925–1932

    Article  CAS  PubMed  Google Scholar 

  8. Leggate EJ, Bill E, Essigke T, Ullmann GM, Hirst J (2004) Formation and characterization of an all-ferrous Rieske cluster and stabilization of the [2Fe-2S](0) core by protonation. Proc Natl Acad Sci U S A 101:10913–10918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Yoo SJ, Meyer J, Munck E (1999) Mossbauer evidence for a diferrous [2Fe-2S] cluster in a ferredoxin from Aquifex aeolicus. J Am Chem Soc 121:10450–10451

    Article  CAS  Google Scholar 

  10. Achim C, Golinelli MP, Bominaar EL, Meyer J, Munck E (1996) Mossbauer study of Cys56Ser mutant 2Fe ferredoxin from Clostridium pasteurianum: evidence for double exchange in an [Fe2S2](+) cluster. J Am Chem Soc 118:8168–8169

    Article  CAS  Google Scholar 

  11. Fee JA, Findling KL, Yoshida T, Hille R, Tarr GE, Hearshen DO, Dunham WR, Day EP, Kent TA, Munck E (1984) Purification and characterization of the Rieske iron-sulfur protein from Thermus-thermophilus—evidence for a [2fe-2s] cluster having non-cysteine ligands. J Biol Chem 259:124–133

    CAS  PubMed  Google Scholar 

  12. Pikus JD, Studts JM, Achim C, Kauffmann KE, Munck E, Steffan RJ, McClay K, Fox BG (1996) Recombinant toluene-4-monooxygenase: catalytic and Mossbauer studies of the purified diiron and Rieske components of a four-protein complex. Biochemistry 35:9106–9119

    Article  CAS  PubMed  Google Scholar 

  13. Schunemann V, Trautwein AX, Illerhaus J, Haehnel W (1999) Mossbauer and electron paramagnetic resonance studies of the cytochrome bf complex. Biochemistry 38:8981–8991

    Article  CAS  PubMed  Google Scholar 

  14. Tinberg CE, Tonzetich ZJ, Wang HX, Do LH, Yoda Y, Cramer SP, Lippard SJ (2010) Characterization of iron dinitrosyl species formed in the reaction of nitric oxide with a biological Rieske center. J Am Chem Soc 132:18168–18176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Legall J, Prickril BC, Moura I, Xavier AV, Moura JJG, Huynh BH (1988) Isolation and characterization of rubrerythrin, a non-heme iron protein from desulfovibrio-vulgaris that contains rubredoxin centers and a hemerythrin-like binuclear iron cluster. Biochemistry 27:1636–1642

    Article  CAS  PubMed  Google Scholar 

  16. Achim C, Bominaar EL, Meyer J, Peterson J, Munck E (1999) Observation and interpretation of temperature-dependent valence delocalization in the [2Fe-2S](+) cluster of a ferredoxin from Clostridium pasteurianum. J Am Chem Soc 121:3704–3714

    Article  CAS  Google Scholar 

  17. Lindahl PA, Day EP, Kent TA, Ormejohnson WH, Munck E (1985) Mossbauer, electron-paramagnetic-Res, and magnetization studies of the Azotobacter-Vinelandii Fe protein—evidence for a [4fe-4s]1+ cluster with spin S = 3/2. J Biol Chem 260:1160–1173

    Google Scholar 

  18. Bertini I, Campos AP, Luchinat C, Teixeira M (1993) A Mossbauer investigation of oxidized Fe4s4 Hipip-Ii from Ectothiorohodospira-Halophila. J Inorg Biochem 52:227–234

    Article  CAS  Google Scholar 

  19. Middleton P, Dickson DPE, Johnson CE, Rush JD (1980) Interpretation of the Mossbauer-spectra of the high-potential iron protein from chromatium. Eur J Biochem 104:289–296

    Article  CAS  PubMed  Google Scholar 

  20. Bominaar EL, Borshch SA, Girerd JJ (1994) Double-exchange and vibronic coupling in mixed-valence systems—electronic-structure of [Fe4s4](3+) clusters in high-potential iron protein and related models. J Am Chem Soc 116:5362–5372

    Article  CAS  Google Scholar 

  21. Heinnickel M, Agalarov R, Svensen N, Krebs C, Golbeck JH (2006) Identification of FX in the heliobacterial reaction center as a [4Fe-4S] cluster with an S = (3)/(2) ground spin state. Biochemistry 45:6756–6764

    Article  CAS  PubMed  Google Scholar 

  22. Kennedy MC, Kent TA, Emptage M, Merkle H, Beinert H, Munck E (1984) Evidence for the formation of a linear (3Fe-4S] cluster in partially unfolded Aconitase. J Biol Chem 259:4463–4471

    Google Scholar 

  23. Krebs C, Henshaw TF, Cheek J, Huynh BH, Broderick JB (2000) Conversion of 3Fe-4S to 4Fe-4S clusters in native pyruvate formate-lyase activating enzyme: Mossbauer characterization and implications for mechanism. J Am Chem Soc 122:12497–12506

    Article  CAS  Google Scholar 

  24. Huynh BH, Moura JJ, Moura I, Kent TA, LeGall J, Xavier AV, Munck E (1980) Evidence for a three-iron center in a ferredoxin from Desulfovibrio gigas. Mossbauer and EPR studies. J Biol Chem 255:3242–3244

    CAS  PubMed  Google Scholar 

  25. Hanzelmann P, Hernandez HL, Menzel C, Garcia-Serres R, Huynh BH, Johnson MK, Mendel RR, Schindelin H (2004) Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis. J Biol Chem 279:34721–34732

    Article  PubMed  Google Scholar 

  26. Lanz ND, Grove TL, Gogonea CB, Lee KH, Krebs C, Booker SJ (2012) RImN and AtsB as models for the overproduction and characterization radical SAM proteins. Methods Enzymol 516:125–152

    Article  CAS  PubMed  Google Scholar 

  27. Bollinger JM, Tong WH, Ravi N, Huynh BH, Edmondson DE, Stubbe J (1995) Use of rapid kinetics methods to study the assembly of the diferric-tyrosyl radical cofactor of Escherichia-Coli ribonucleotide reductase. Method Enzymol 258:278–303

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Garcia-Serres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Clémancey, M., Blondin, G., Latour, JM., Garcia-Serres, R. (2014). Mössbauer Spectroscopy. In: Fontecilla-Camps, J., Nicolet, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1122. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-794-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-794-5_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-793-8

  • Online ISBN: 978-1-62703-794-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics