Skip to main content

An Optimized Yeast Cell-Free Lysate System for In Vitro Translation of Human Virus mRNA

  • Protocol
  • First Online:
Cell-Free Protein Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1118))

Abstract

Yeast (Saccharomyces cerevisiae) as a model organism has long been established to study various aspects of eukaryotic cellular and molecular biology. Cell-free lysates prepared from different yeast strains have been used as a powerful tool to study eukaryotic protein expression in vitro. Recently, we established a yeast cell-free lysate system for in vitro translation long and short L1 capsid gene mRNAs of human papillomavirus type 58. We were able to significantly improve the translation efficiencies of the viral mRNAs in the established system by optimizing the concentrations of potassium and magnesium and controlling the physiological status of the yeast cells used for lysate preparation. We proved that a single specific amino acid can be rate limiting for translation of a target mRNA. Here, we describe the materials, method, and technique used for the development of an efficient yeast cell-free translation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adhikary G, Chew YC, Reece EA et al (2010) PKC-delta and -eta, MEKK-1, MEK-6, MEK-3, and p38-delta are essential mediators of the response of normal human epidermal keratinocytes to differentiating agents. J Invest Dermatol 130:2017–2030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Endo Y, Sawasaki T (2006) Cell-free expression systems for eukaryotic protein production. Curr Opin Biotechnol 17:373–380

    Article  CAS  PubMed  Google Scholar 

  3. Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23:150–156

    Article  CAS  PubMed  Google Scholar 

  4. Lowe JB, Marth JD (2003) A genetic approach to Mammalian glycan function. Annu Rev Biochem 72:643–691

    Article  CAS  PubMed  Google Scholar 

  5. Abraham AK, Olsnes S, Pihl A (1979) Fidelity of protein synthesis in vitro is increased in the presence of spermidine. FEBS Lett 101:93–96

    Article  CAS  PubMed  Google Scholar 

  6. Lodish HF, Desalu O (1973) Regulation of synthesis of non-globin proteins in cell-free extracts of rabbit reticulocytes. J Biol Chem 248:3420–3427

    CAS  PubMed  Google Scholar 

  7. Botstein D, Chervitz SA, Cherry JM (1997) Yeast as a model organism. Science 277:1259–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gasior E, Herrera F, Sadnik I et al (1979) The preparation and characterization of a cell-free system from Saccharomyces cerevisiae that translates natural messenger ribonucleic acid. J Biol Chem 254:3965–3969

    CAS  PubMed  Google Scholar 

  9. Szczesna E, Filipowicz W (1980) Faithful and efficient translation of viral and cellular eukaryotic mRNAs in a cell-free S-27 extract of Saccharomyces cerevisiae. Biochem Biophys Res Commun 92:563–569

    Article  CAS  PubMed  Google Scholar 

  10. Tuite MF, Plesset J, Moldave K et al (1980) Faithful and efficient translation of homologous and heterologous mRNAs in an mRNA-dependent cell-free system from Saccharomyces cerevisiae. J Biol Chem 255:8761–8766

    CAS  PubMed  Google Scholar 

  11. Tuite MF, Plesset J (1986) mRNA-dependent yeast cell-free translation systems: theory and practice. Yeast 2:35–52

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Liu J, Zheng Y et al (2008) An optimized yeast cell-free system: sufficient for translation of human papillomavirus 58 L1 mRNA and assembly of virus-like particles. J Biosci Bioeng 106:8–15

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Liu J, Zhao WM et al (2010) Translational comparison of HPV58 long and short L1 mRNAs in yeast (Saccharomyces cerevisiae) cell-free system. J Biosci Bioeng 110:58–65

    Article  CAS  PubMed  Google Scholar 

  14. Zhao KN, Liu WJ, Frazer IH (2003) Codon usage bias and A+T content variation in human papillomavirus genomes. Virus Res 98:95–104

    Article  CAS  PubMed  Google Scholar 

  15. Zhao KN, Frazer IH (2002) Saccharomyces cerevisiae is permissive for replication of bovine papillomavirus type 1. J Virol 76:12265–12273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zhao KN, Frazer IH (2002) Replication of bovine papillomavirus type 1 (BPV-1) DNA in Saccharomyces cerevisiae following infection with BPV-1 virions. J Virol 76:3359–3364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lowe RS, Brown DR, Bryan JT et al (1997) Human papillomavirus type 11 (HPV-11) neutralizing antibodies in the serum and genital mucosal secretions of African green monkeys immunized with HPV-11 virus-like particles expressed in yeast. J Infect Dis 176:1141–1145

    Article  CAS  PubMed  Google Scholar 

  18. Wilson VG, West M, Woytek K et al (2002) Papillomavirus E1 proteins: form, function, and features. Virus Genes 24:275–290

    Article  CAS  PubMed  Google Scholar 

  19. Zhao KN, Tomlinson L, Liu WJ et al (2003) Effects of additional sequences directly downstream from the AUG on the expression of GFP gene. Biochim Biophys Acta 1630:84–95

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a National Health and Medical Research Council of Australia Industry Research Fellowship (301256 to KNZ) and grants from Cancer Council of Queensland (401623 to KNZ).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, X., Zhao, L., Zhao, KN. (2014). An Optimized Yeast Cell-Free Lysate System for In Vitro Translation of Human Virus mRNA. In: Alexandrov, K., Johnston, W. (eds) Cell-Free Protein Synthesis. Methods in Molecular Biology, vol 1118. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-782-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-782-2_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-781-5

  • Online ISBN: 978-1-62703-782-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics