Skip to main content

Cryo-electron Microscopy of Membrane Proteins

  • Protocol
  • First Online:
Book cover Electron Microscopy

Abstract

Electron crystallography is used to study membrane proteins in the form of planar, two-dimensional (2D) crystals, or other crystalline arrays such as tubular crystals. This method has been used to determine the atomic resolution structures of bacteriorhodopsin, tubulin, aquaporins, and several other membrane proteins. In addition, a large number of membrane protein structures were studied at a slightly lower resolution, whereby at least secondary structure motifs could be identified.

In order to conserve the structural details of delicate crystalline arrays, cryo-electron microscopy (cryo-EM) allows imaging and/or electron diffraction of membrane proteins in their close-to-native state within a lipid bilayer membrane.

To achieve ultimate high-resolution structural information of 2D crystals, meticulous sample preparation for electron crystallography is of outmost importance. Beam-induced specimen drift and lack of specimen flatness can severely affect the attainable resolution of images for tilted samples. Sample preparations that sandwich the 2D crystals between symmetrical carbon films reduce the beam-induced specimen drift, and the flatness of the preparations can be optimized by the choice of the grid material and the preparation protocol.

Data collection in the cryo-electron microscope using either the imaging or the electron diffraction mode has to be performed applying low-dose procedures. Spot-scanning further reduces the effects of beam-induced drift. Data collection using automated acquisition schemes, along with improved and user-friendlier data processing software, is increasingly being used and is likely to bring the technique to a wider user base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  CAS  PubMed  Google Scholar 

  2. Unwin PN, Henderson R (1975) Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol 94:425–440

    Article  CAS  PubMed  Google Scholar 

  3. Taylor KA, Glaeser RM (1974) Electron diffraction of frozen, hydrated protein crystals. Science 186:1036–1037

    Article  CAS  PubMed  Google Scholar 

  4. Taylor KA, Glaeser RM (1976) Electron microscopy of frozen hydrated biological specimens. J Ultrastruct Res 55:448–456

    Article  CAS  PubMed  Google Scholar 

  5. Adrian M, Dubochet J, Lepault J et al (1984) Cryo-electron microscopy of viruses. Nature 308:32–36

    Article  CAS  PubMed  Google Scholar 

  6. Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203

    Article  CAS  PubMed  Google Scholar 

  7. Henderson R, Baldwin JM, Ceska TA et al (1990) Model for the structure of Bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929

    Article  CAS  PubMed  Google Scholar 

  8. Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621

    Article  PubMed  Google Scholar 

  9. Murata K, Mitsuoka K, Hirai T et al (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  10. Ren G, Reddy VS, Cheng A et al (2001) Visualization of a water-selective pore by electron crystallography in vitreous ice. Proc Natl Acad Sci U S A 98:1398–1403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gonen T, Sliz P, Kistler J et al (2004) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197

    Article  CAS  PubMed  Google Scholar 

  12. Hiroaki Y, Tani K, Kamegawa A et al (2006) Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol 355:628–639

    Article  CAS  PubMed  Google Scholar 

  13. Tani K, Mitsuma T, Hiroaki Y et al (2009) Mechanism of aquaporin-4’s fast and highly selective water conduction and proton exclusion. J Mol Biol 389:694–706

    Article  CAS  PubMed  Google Scholar 

  14. Abeyrathne PD, Arheit M, Kebbel F et al (2012) Electron microscopy analysis of 2D Crystals of membrane proteins. In: Egelman EH (ed) Comprehensive biophysics. Academic, Oxford, pp 277–310

    Chapter  Google Scholar 

  15. Grigorieff N, Ceska TA, Downing KH et al (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol 259:393–421

    Article  CAS  PubMed  Google Scholar 

  16. Mitsuoka K, Hirai T, Murata K et al (1999) The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: implication of the charge distribution. J Mol Biol 286:861–882

    Article  CAS  PubMed  Google Scholar 

  17. Dubochet J, Adrian M, Chang JJ et al (1988) Cryo-electron microscopy of vitrified specimens. Quart Rev Biophys 21:129–228

    Article  CAS  Google Scholar 

  18. Fujiyoshi Y, Unwin N (2008) Electron crystallography of proteins in membranes. Curr Opin Struct Biol 18:587–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Fujiyoshi Y, Mizusaki T, Morikawa K et al (1991) Development of a superfluid helium stage for high resolution electron microscopy. Ultramicroscopy 38:241–251

    Article  Google Scholar 

  20. Downing KH, Hendrickson FM (1999) Performance of a 2k CCD camera designed for electron crystallography at 400 kV. Ultramicroscopy 75:215–233

    Article  CAS  PubMed  Google Scholar 

  21. Glaeser RM (1992) Specimen flatness of thin crystalline arrays: influence of the substrate. Ultramicroscopy 46:33–43

    Article  CAS  PubMed  Google Scholar 

  22. Gyobu N, Tani K, Hiroaki Y et al (2004) Improved specimen preparation for cryo-electron microscopy using a symmetric carbon sandwich technique. J Struct Biol 146:325–333

    Article  CAS  PubMed  Google Scholar 

  23. Vonck J (2000) Parameters affecting specimen flatness of two-dimensional crystals for electron crystallography. Ultramicroscopy 85:123–129

    Article  CAS  PubMed  Google Scholar 

  24. Downing KH (1991) Spot-scan imaging in transmission electron microscopy. Science 251:53–59

    Article  CAS  PubMed  Google Scholar 

  25. Remigy HW, Caujolle-Bert D, Suda K et al (2003) Membrane protein reconstitution and crystallization by controlled dilution. FEBS Lett 555:160–169

    Article  CAS  PubMed  Google Scholar 

  26. Jap BK, Zulauf M, Scheybani T et al (1992) 2D crystallization: from art to science. Ultramicroscopy 46:45–84

    Article  CAS  PubMed  Google Scholar 

  27. Levy D, Chami M, Rigaud JL (2001) Two-dimensional crystallization of membrane proteins: the lipid layer strategy. FEBS Lett 504:187–193

    Article  CAS  PubMed  Google Scholar 

  28. Kühlbrandt W (1992) Two-dimensional crystallization of membrane proteins. Quart Rev Biophys 25:1–49

    Article  Google Scholar 

  29. Hasler L, Heymann JB, Engel A et al (1998) 2D crystallization of membrane proteins: rationales and examples. J Struct Biol 121:162–171

    Article  CAS  PubMed  Google Scholar 

  30. Abeyrathne PD, Chami M, Pantelic RS et al (2010) Preparation of 2D crystals of membrane proteins for high-resolution electron crystallography data collection. Meth Enzymol 481:25–43

    Article  CAS  PubMed  Google Scholar 

  31. Signorell GA, Kaufmann TC, Kukulski W et al (2007) Controlled 2D crystallization of membrane proteins using methyl-beta-cyclodextrin. J Struct Biol 157:321–328

    Article  CAS  PubMed  Google Scholar 

  32. Iacovache I, Biasini M, Kowal J et al (2010) The 2DX robot: a membrane protein 2D crystallization Swiss Army knife. J Struct Biol 169:370–378

    Article  CAS  PubMed  Google Scholar 

  33. Coudray N, Hermann G, Caujolle-Bert D et al (2011) Automated screening of 2D crystallization trials using transmission electron microscopy: a high-throughput tool-chain for sample preparation and microscopic analysis. J Struct Biol 173:365–374

    Article  CAS  PubMed  Google Scholar 

  34. Hu M, Vink M, Kim C et al (2010) Automated electron microscopy for evaluating two-dimensional crystallization of membrane proteins. J Struct Biol 171:102–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Henderson R (1992) Image contrast in high-resolution electron microscopy of biological macromolecules: TMV in ice. Ultramicroscopy 46:1–18

    Article  CAS  PubMed  Google Scholar 

  36. Kimura Y, Vassylyev DG, Miyazawa A et al (1997) Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature 389:206–211

    Article  CAS  PubMed  Google Scholar 

  37. Glaeser RM (2008) Retrospective: radiation damage and its associated “information limitations”. J Struct Biol 163:271–276

    Article  CAS  PubMed  Google Scholar 

  38. Golas MM, Sander B, Will CL et al (2003) Molecular architecture of the multiprotein splicing factor SF3b. Science 300:980–984

    Article  CAS  PubMed  Google Scholar 

  39. Golas MM, Sander B, Will CL et al (2005) Major conformational change in the complex SF3b upon integration into the spliceosomal U11/U12 di-snRNP as revealed by electron cryomicroscopy. Mol Cell 17:869–883

    Article  CAS  PubMed  Google Scholar 

  40. Glaeser RM, Typke D, Tiemeijer PC et al (2011) Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM. J Struct Biol 174:1–10

    Article  PubMed Central  PubMed  Google Scholar 

  41. Aebi U, Smith PR, Dubochet J et al (1973) A study of the structure of the T-layer of Bacillus brevis. J Supramol Struct 1:498–522

    Article  CAS  PubMed  Google Scholar 

  42. Glaeser RM, Hall RJ (2011) Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects. Biophys J 100:2331–2337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zhang X, Zhou ZH (2011) Limiting factors in atomic resolution cryo electron microscopy: no simple tricks. J Struct Biol 175:253–263

    Article  PubMed Central  PubMed  Google Scholar 

  44. Walz T, Grigorieff N (1998) Electron crystallography of two-dimensional crystals of membrane proteins. J Struct Biol 121:142–161

    Article  CAS  PubMed  Google Scholar 

  45. Downing KH, Li H (2001) Accurate recording and measurement of electron diffraction data in structural and difference Fourier studies of proteins. Microsc Microanal 7:407–417

    Article  CAS  PubMed  Google Scholar 

  46. Iancu CV, Wright ER, Heymann JB et al (2006) A comparison of liquid nitrogen and liquid helium as cryogens for electron cryotomography. J Struct Biol 153:231–240

    Article  CAS  PubMed  Google Scholar 

  47. Comolli LR, Downing KH (2005) Dose tolerance at helium and nitrogen temperatures for whole cell electron tomography. J Struct Biol 152:149–156

    Article  CAS  PubMed  Google Scholar 

  48. Bammes BE, Jakana J, Schmid MF et al (2010) Radiation damage effects at four specimen temperatures from 4 to 100 K. J Struct Biol 169:331–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Fujiyoshi Y (1998) The structural study of membrane proteins by electron crystallography. Adv Biophys 35:25–80

    Article  CAS  PubMed  Google Scholar 

  50. Amos LA, Henderson R, Unwin PN (1982) Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog Biophys Mol Biol 39:183–231

    Article  CAS  PubMed  Google Scholar 

  51. Henderson R, Baldwin JM, Downing KH et al (1986) Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19:147–178

    Article  CAS  Google Scholar 

  52. Crowther R, Henderson R, Smith J (1996) MRC image processing programs. J Struct Biol 116:9–16

    Article  CAS  PubMed  Google Scholar 

  53. Gipson B, Zeng X, Zhang Z et al (2007) 2dx—user-friendly image processing for 2D crystals. J Struct Biol 157:64–72

    Article  CAS  PubMed  Google Scholar 

  54. Gipson B, Zeng X, Stahlberg H (2008) 2dx - automated 3D structure reconstruction from 2D crystal data. Microsc Microanal 14:1290–1291

    Article  Google Scholar 

  55. Gipson B, Zeng X, Stahlberg H (2007) 2dx_merge: data management and merging for 2D crystal images. J Struct Biol 160:375–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Zeng X, Gipson B, Zheng ZY et al (2007) Automatic lattice determination for two-dimensional crystal images. J Struct Biol 160:353–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Zeng X, Stahlberg H, Grigorieff N (2007) A maximum likelihood approach to two-dimensional crystals. J Struct Biol 160:362–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Philippsen A, Schenk AD, Signorell GA et al (2007) Collaborative EM image processing with the IPLT image processing library and toolbox. J Struct Biol 157:28–37

    Article  CAS  PubMed  Google Scholar 

  59. Philippsen A, Schenk AD, Stahlberg H et al (2003) IPLT – image processing library and toolkit for the electron microscopy community. J Struct Biol 144:4–12

    Article  PubMed  Google Scholar 

  60. Schenk AD, Castano-Diez D, Gipson B et al (2010) 3D reconstruction from 2D crystal image and diffraction data. Meth Enzymol 482:101–129

    Article  CAS  PubMed  Google Scholar 

  61. Schmidt-Krey I, Cheng Y (eds) (2013) Electron crystallography of soluble and membrane proteins, vol 95, Methods in Molecular Biology. Humana Press, New York, NY

    Google Scholar 

  62. Arheit M, Castano-Diez D, Thierry R et al (2013) Merging of image data in electron crystallography. Meth Mol Biol 955:195–209

    Article  CAS  Google Scholar 

  63. Arheit M, Castano-Diez D, Thierry R et al (2013) Automation of image processing in electron crystallography. Meth Mol Biol 955:313–330

    Article  Google Scholar 

  64. Arheit M, Castano-Diez D, Thierry R et al (2013) Image processing of 2D crystal images. Meth Mol Biol 955:171–194

    Article  CAS  Google Scholar 

  65. Glaeser RM, Downing KH (1992) Assessment of resolution in biological electron crystallography. Ultramicroscopy 47:256–265

    Article  CAS  PubMed  Google Scholar 

  66. Glaeser RM, Downing KH (2004) Specimen charging on thin films with one conducting layer: discussion of physical principles. Microsc Microanal 10:790–796

    Article  CAS  PubMed  Google Scholar 

  67. Butt H-J, Wang DN, Hansma PK et al (1991) Effect of surface roughness of carbon support films on high-resolution electron diffraction of two-dimensional protein crystals. Ultra-microscopy 36:307–318

    CAS  Google Scholar 

  68. Booy FP, Pawley JB (1993) Cryo-crinkling: what happens to carbon films on copper grids at low temperature. Ultramicroscopy 48:273–280

    Article  CAS  PubMed  Google Scholar 

  69. Mindell JA, Maduke M, Miller C et al (2001) Projection structure of a ClC-type chloride channel at 6.5 Å resolution. Nature 409:219–223

    Article  CAS  PubMed  Google Scholar 

  70. Stahlberg H, Braun T, de Groot B et al (2000) The 6.9 Å structure of GlpF: a basis for homology modeling of the glycerol channel from Escherichia coli. J Struct Biol 132:133–141

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Goldie, K.N., Abeyrathne, P., Kebbel, F., Chami, M., Ringler, P., Stahlberg, H. (2014). Cryo-electron Microscopy of Membrane Proteins. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics