Skip to main content

Adipose Stem Cells and Adipogenesis

  • Chapter
  • First Online:
Adipose Tissue and Adipokines in Health and Disease

Part of the book series: Nutrition and Health ((NH))

Abstract

Adipocytes are highly specialized cells that form and store fat in adipose tissue and play a major role in energy homeostasis in vertebrate organisms. Obesity results from an energy surplus and is characterized by an increased storage of lipid and expansion of adipose tissue. Obesity modifies the endocrine and metabolic functions of adipocytes and is a risk factor for many other metabolic diseases, including type II diabetes, cardiovascular ischemic disease, atherosclerosis, and hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poulos SP, Hausman DB, Hausman GJ. The development and endocrine functions of adipose tissue. Mol Cell Endocrinol. 2010;323(1):20–34. Epub 2009/12/23.

    PubMed  CAS  Google Scholar 

  2. Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome–an allostatic perspective. Biochim Biophys Acta. 2010;1801(3):338–49. Epub 2010/01/09.

    PubMed  CAS  Google Scholar 

  3. Isakson P, Hammarstedt A, Gustafson B, Smith U. Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes. 2009;58(7):1550–7. Epub 2009/04/09.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Tchoukalova Y, Koutsari C, Jensen M. Committed subcutaneous preadipocytes are reduced in human obesity. Diabetologia. 2007;50(1):151–7.

    PubMed  CAS  Google Scholar 

  5. Hauner H, Wabitsch M, Pfeiffer EF. Differentiation of adipocyte precursor cells from obese and nonobese adult women and from different adipose tissue sites. Horm Metab Res Suppl. 1988;19:35–9.

    PubMed  CAS  Google Scholar 

  6. Gregoire FM, Johnson PR, Greenwood MR. Comparison of the adipoconversion of preadipocytes derived from lean and obese Zucker rats in serum-free cultures. Int J Obes Relat Metab Disord. 1995;19(9):664–70. Epub 1995/09/01.

    PubMed  CAS  Google Scholar 

  7. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–7.

    PubMed  CAS  Google Scholar 

  8. Strissel KJ, Stancheva Z, Miyoshi H, Perfield 2nd JW, DeFuria J, Jick Z, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56(12):2910–8. Epub 2007/09/13.

    PubMed  CAS  Google Scholar 

  9. Lefterova MI, Lazar MA. New developments in adipogenesis. Trends Endocrinol Metab: TEM. 2009;20(3):107–14. Epub 2009/03/10.

    PubMed  CAS  Google Scholar 

  10. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–7. Epub 2008/08/23.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7(12):885–96. Epub 2006/12/02.

    PubMed  CAS  Google Scholar 

  12. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28. Epub 2001/04/17.

    PubMed  CAS  Google Scholar 

  13. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95. Epub 2002/12/12.

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun. 2002;290(2):763–9. Epub 2002/01/12.

    PubMed  CAS  Google Scholar 

  15. Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun. 2002;294(2):371–9. Epub 2002/06/08.

    PubMed  CAS  Google Scholar 

  16. Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng. 2001;7(6):729–41. Epub 2001/12/26.

    PubMed  CAS  Google Scholar 

  17. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109(5):656–63. Epub 2004/01/22.

    PubMed  Google Scholar 

  18. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells. 2005;23(3):412–23. Epub 2005/03/08.

    PubMed  CAS  Google Scholar 

  19. Rodriguez AM, Pisani D, Dechesne CA, Turc-Carel C, Kurzenne JY, Wdziekonski B, et al. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med. 2005;201(9):1397–405. Epub 2005/05/04.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Prunet-Marcassus B, Cousin B, Caton D, Andre M, Penicaud L, Casteilla L. From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp Cell Res. 2006;312(6):727–36. Epub 2006/01/03.

    PubMed  CAS  Google Scholar 

  21. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5(5):362–9. Epub 2003/10/28.

    PubMed  Google Scholar 

  22. Green H, Kehinde O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 1975;5(1):19–27. Epub 1975/05/01.

    PubMed  CAS  Google Scholar 

  23. Green H, Kehinde O. Spontaneous heritable changes leading to increased adipose conversion in 3 T3 cells. Cell. 1976;7(1):105–13. Epub 1976/01/01.

    PubMed  CAS  Google Scholar 

  24. Dani C, Smith AG, Dessolin S, Leroy P, Staccini L, Villageois P, et al. Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci. 1997;110(Pt 11):1279–85. Epub 1997/06/01.

    PubMed  CAS  Google Scholar 

  25. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. Epub 2007/11/24.

    PubMed  CAS  Google Scholar 

  26. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20. Epub 2007/11/22.

    PubMed  CAS  Google Scholar 

  27. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26(1):101–6. Epub 2007/12/07.

    PubMed  CAS  Google Scholar 

  28. Taura D, Noguchi M, Sone M, Hosoda K, Mori E, Okada Y, et al. Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett. 2009;583(6):1029–33. Epub 2009/03/03.

    PubMed  CAS  Google Scholar 

  29. Pinney DF, Emerson Jr CP. 10 T1/2 cells: an in vitro model for molecular genetic analysis of mesodermal determination and differentiation. Environ Health Perspect. 1989;80:221–7. Epub 1989/03/01.

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Taylor SM, Jones PA. Multiple new phenotypes induced in 10 T1/2 and 3 T3 cells treated with 5-azacytidine. Cell. 1979;17(4):771–9. Epub 1979/08/01.

    PubMed  CAS  Google Scholar 

  31. Bezaire V, Mairal A, Ribet C, Lefort C, Girousse A, Jocken J, et al. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J Biol Chem. 2009;284(27):18282–91. Epub 2009/05/13.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A, Rosano GM, et al. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem. 2010;110(3):564–72. Epub 2010/06/01.

    PubMed  CAS  Google Scholar 

  33. Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, et al. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest. 1989;84(5):1663–70. Epub 1989/11/01.

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Reyne Y, Nougues J, Dulor JP. Differentiation of rabbit adipocyte precursor cells in a serum-free medium. In Vitro Cell Dev Biol. 1989;25(8):747–52. Epub 1989/08/01.

    PubMed  CAS  Google Scholar 

  35. Litthauer D, Serrero G. The primary culture of mouse adipocyte precursor cells in defined medium. Comp Biochem Physiol A Comp Physiol. 1992;101(1):59–64. Epub 1992/01/01.

    PubMed  CAS  Google Scholar 

  36. Kirkland JL, Hollenberg CH, Kindler S, Gillon WS. Effects of age and anatomic site on preadipocyte number in rat fat depots. J Gerontol. 1994;49(1):B31–5.

    PubMed  CAS  Google Scholar 

  37. Maslowska MH, Sniderman AD, MacLean LD, Cianflone K. Regional differences in triacylglycerol synthesis in adipose tissue and in cultured preadipocytes. J Lipid Res. 1993;34(2):219–28. Epub 1993/02/01.

    PubMed  CAS  Google Scholar 

  38. Tchoukalova YD, Votruba SB, Tchkonia T, Giorgadze N, Kirkland JL, Jensen MD. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci U S A. 2010;107(42):18226–31. Epub 2010/10/06.

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Djian P, Roncari AK, Hollenberg CH. Influence of anatomic site and age on the replication and differentiation of rat adipocyte precursors in culture. J Clin Invest. 1983;72(4):1200–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Djian P, Roncari DA, Hollenberg CH. Adipocyte precursor clones vary in capacity for differentiation. Metabolism. 1985;34(9):880–3. Epub 1985/09/01.

    PubMed  CAS  Google Scholar 

  41. Wang H, Kirkland JL, Hollenberg CH. Varying capacities for replication of rat adipocyte precursor clones and adipose tissue growth. J Clin Invest. 1989;83(5):1741–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Kirkland JL, Hollenberg CH, Gillon WS. Age, anatomic site, and the replication and differentiation of adipocyte precursors. Am J Physiol. 1990;258(2 Pt 1):C206–10.

    PubMed  CAS  Google Scholar 

  43. Sztalryd C, Faust IM. Depot-specific features of adipocyte progenitors revealed by primary cultures plated at low density. Int J Obes. 1990;14 Suppl 3:165–75. Epub 1990/01/01.

    PubMed  Google Scholar 

  44. Gregoire F, Todoroff G, Hauser N, Remacle C. The stroma-vascular fraction of rat inguinal and epididymal adipose tissue and the adipoconversion of fat cell precursors in primary culture. Biol Cell. 1990;69(3):215–22. Epub 1990/01/01.

    PubMed  CAS  Google Scholar 

  45. Kirkland JL, Hollenberg CH, Gillon WS. Ageing, differentiation, and gene expression in rat epididymal preadipocytes. Biochem Cell Biol. 1993;71(11–12):556–61. Epub 1993/11/01.

    PubMed  CAS  Google Scholar 

  46. Carraro R, Li ZH, Johnson Jr JE, Gregerman RI. Adipocytes of old rats produce a decreased amount of differentiation factor for preadipocytes derived from adipose tissue islets. J Gerontol. 1992;47(6):B198–201. Epub 1992/11/11.

    PubMed  CAS  Google Scholar 

  47. Sugihara H, Yonemitsu N, Miyabara S, Yun K. Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation. 1986;31(1):42–9. Epub 1986/01/01.

    PubMed  CAS  Google Scholar 

  48. Sugihara H, Yonemitsu N, Miyabara S, Toda S. Proliferation of unilocular fat cells in the primary culture. J Lipid Res. 1987;28(9):1038–45. Epub 1987/09/01.

    PubMed  CAS  Google Scholar 

  49. Yagi K, Kondo D, Okazaki Y, Kano K. A novel preadipocyte cell line established from mouse adult mature adipocytes. Biochem Biophys Res Commun. 2004;321(4):967–74. Epub 2004/09/11.

    PubMed  CAS  Google Scholar 

  50. Fernyhough ME, Hausman GJ, Guan LL, Okine E, Moore SS, Dodson MV. Mature adipocytes may be a source of stem cells for tissue engineering. Biochem Biophys Res Commun. 2008;368(3):455–7. Epub 2008/02/07.

    PubMed  CAS  Google Scholar 

  51. Matsumoto T, Kano K, Kondo D, Fukuda N, Iribe Y, Tanaka N, et al. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol. 2008;215(1):210–22. Epub 2007/12/08.

    PubMed  CAS  Google Scholar 

  52. Nobusue H, Endo T, Kano K. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue. Cell Tissue Res. 2008;332(3):435–46. Epub 2008/04/04.

    PubMed  CAS  Google Scholar 

  53. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24(2):376–85. Epub 2005/12/03.

    PubMed  Google Scholar 

  54. Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res. 2012;53(2):227–46. Epub 2011/12/06.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Li H, Zimmerlin L, Marra KG, Donnenberg VS, Donnenberg AD, Rubin JP. Adipogenic potential of adipose stem cell subpopulations. Plast Reconstr Surg. 2011;128(3):663–72. Epub 2011/05/17.

    PubMed  CAS  Google Scholar 

  56. Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol. 2010;12(2):153–63. Epub 2010/01/19.

    PubMed  CAS  Google Scholar 

  57. Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell. 2008;135(2):240–9. Epub 2008/10/07.

    PubMed  CAS  Google Scholar 

  58. Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322(5901):583–6. Epub 2008/09/20.

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Sengenes C, Lolmede K, Zakaroff-Girard A, Busse R, Bouloumie A. Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol. 2005;205(1):114–22.

    PubMed  CAS  Google Scholar 

  60. Festy F, Hoareau L, Bes-Houtmann S, Pequin AM, Gonthier MP, Munstun A, et al. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem Cell Biol. 2005;124(2):113–21. Epub 2005/07/21.

    PubMed  CAS  Google Scholar 

  61. Pisani DF, Dechesne CA, Sacconi S, Delplace S, Belmonte N, Cochet O, et al. Isolation of a highly myogenic CD34-negative subset of human skeletal muscle cells free of adipogenic potential. Stem Cells. 2010;28(4):753–64. Epub 2010/02/06.

    PubMed  CAS  Google Scholar 

  62. Maumus M, Peyrafitte JA, D’Angelo R, Fournier-Wirth C, Bouloumie A, Casteilla L, et al. Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond). 2011;35(9):1141–53. Epub 2011/01/27.

    CAS  Google Scholar 

  63. Villena JA, Kim KH, Sul HS. Pref-1 and ADSF/resistin: two secreted factors inhibiting adipose tissue development. Horm Metab Res. 2002;34(11–12):664–70. Epub 2003/03/28.

    PubMed  CAS  Google Scholar 

  64. Ibrahimi A, Bertrand B, Bardon S, Amri EZ, Grimaldi P, Ailhaud G, et al. Cloning of alpha 2 chain of type VI collagen and expression during mouse development. Biochem J. 1993;289(Pt 1):141–7. Epub 1993/01/01.

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Hu E, Zhu Y, Fredrickson T, Barnes M, Kelsell D, Beeley L, et al. Tissue restricted expression of two human Frzbs in preadipocytes and pancreas. Biochem Biophys Res Commun. 1998;247(2):287–93. Epub 1998/06/27.

    PubMed  CAS  Google Scholar 

  66. Sachs PC, Francis MP, Zhao M, Brumelle J, Rao RR, Elmore LW, et al. Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell Tissue Res. 2012;349(2):505–15. Epub 2012/05/26.

    PubMed Central  PubMed  Google Scholar 

  67. Jansen BJ, Gilissen C, Roelofs H, Schaap-Oziemlak A, Veltman JA, Raymakers RA, et al. Functional differences between mesenchymal stem cell populations are reflected by their transcriptome. Stem Cells Dev. 2010;19(4):481–90. Epub 2009/10/01.

    PubMed  CAS  Google Scholar 

  68. Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5(2):103–10. Epub 2009/11/28.

    PubMed  CAS  Google Scholar 

  69. Collas P. Programming differentiation potential in mesenchymal stem cells. Epigenetics. 2010;5(6):476–82. Epub 2010/06/25.

    PubMed  CAS  Google Scholar 

  70. Musri MM, Gomis R, Parrizas M. Chromatin and chromatin-modifying proteins in adipogenesis. Biochem Cell Biol. 2007;85(4):397–410. Epub 2007/08/24.

    PubMed  CAS  Google Scholar 

  71. Pinnick KE, Karpe F. DNA methylation of genes in adipose tissue. Proc Nutr Soc. 2011;70(1):57–63. Epub 2010/12/15.

    PubMed  CAS  Google Scholar 

  72. Ge K. Epigenetic regulation of adipogenesis by histone methylation. Biochim Biophys Acta. 2012;1819(7):727–32. Epub 2012/01/14.

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Bai X, Ma J, Pan Z, Song YH, Freyberg S, Yan Y, et al. Electrophysiological properties of human adipose tissue-derived stem cells. Am J Physiol Cell Physiol. 2007;293(5):C1539–50. Epub 2007/08/10.

    PubMed  CAS  Google Scholar 

  74. Baglioni S, Francalanci M, Squecco R, Lombardi A, Cantini G, Angeli R, et al. Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J. 2009;23(10):3494–505. Epub 2009/07/09.

    PubMed  CAS  Google Scholar 

  75. Ramirez-Ponce MP, Mateos JC, Bellido JA. Human adipose cells have voltage-dependent potassium currents. J Membr Biol. 2003;196(2):129–34. Epub 2004/01/16.

    PubMed  CAS  Google Scholar 

  76. Hu H, He ML, Tao R, Sun HY, Hu R, Zang WJ, et al. Characterization of ion channels in human preadipocytes. J Cell Physiol. 2009;218(2):427–35. Epub 2008/10/23.

    PubMed  CAS  Google Scholar 

  77. Alioua A, Mahajan A, Nishimaru K, Zarei MM, Stefani E, Toro L. Coupling of c-Src to large conductance voltage- and Ca2+-activated K+ channels as a new mechanism of agonist-induced vasoconstriction. Proc Natl Acad Sci U S A. 2002;99(22):14560–5. Epub 2002/10/23.

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Gonzalez-Cruz RD, Fonseca VC, Darling EM. Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc Natl Acad Sci U S A. 2012;109(24):E1523–9. Epub 2012/05/23.

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Lee JA, Parrett BM, Conejero JA, Laser J, Chen J, Kogon AJ, et al. Biological alchemy: engineering bone and fat from fat-derived stem cells. Ann Plast Surg. 2003;50(6):610–7. Epub 2003/06/05.

    PubMed  Google Scholar 

  80. Choi YS, Cha SM, Lee YY, Kwon SW, Park CJ, Kim M. Adipogenic differentiation of adipose tissue derived adult stem cells in nude mouse. Biochem Biophys Res Commun. 2006;345(2):631–7. Epub 2006/05/16.

    PubMed  CAS  Google Scholar 

  81. Mauney JR, Nguyen T, Gillen K, Kirker-Head C, Gimble JM, Kaplan DL. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials. 2007;28(35):5280–90. Epub 2007/09/04.

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006;4(4):263–73.

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM, et al. Transcriptional control of preadipocyte determination by Zfp423. Nature. 2010;464(7288):619–23. Epub 2010/03/05.

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Quach JM, Walker EC, Allan E, Solano M, Yokoyama A, Kato S, et al. Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment. J Biol Chem. 2011;286(6):4186–98. Epub 2010/12/03.

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Birsoy K, Berry R, Wang T, Ceyhan O, Tavazoie S, Friedman JM, et al. Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis. Development. 2011;138(21):4709–19. Epub 2011/10/13.

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Park KW, Waki H, Choi SP, Park KM, Tontonoz P. The small molecule phenamil is a modulator of adipocyte differentiation and PPAR{gamma} expression. J Lipid Res. 2010;51(9):2775–84. Epub 2010/06/04.

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Scheideler M, Elabd C, Zaragosi LE, Chiellini C, Hackl H, Sanchez-Cabo F, et al. Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics. 2008;9:340. Epub 2008/07/19.

    PubMed Central  PubMed  Google Scholar 

  88. Huang H, Song TJ, Li X, Hu L, He Q, Liu M, et al. BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A. 2009;106(31):12670–5. Epub 2009/07/22.

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Zamani N, Brown CW. Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocr Rev. 2011;32(3):387–403. Epub 2010/12/22.

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Kawai M, Rosen CJ. The IGF-I regulatory system and its impact on skeletal and energy homeostasis. J Cell Biochem. 2010;111(1):14–9. Epub 2010/05/28.

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Widberg CH, Newell FS, Bachmann AW, Ramnoruth SN, Spelta MC, Whitehead JP, et al. Fibroblast growth factor receptor 1 is a key regulator of early adipogenic events in human preadipocytes. Am J Physiol Endocrinol Metab. 2009;296(1):E121–31. Epub 2008/10/23.

    PubMed  CAS  Google Scholar 

  92. Xiao L, Sobue T, Esliger A, Kronenberg MS, Coffin JD, Doetschman T, et al. Disruption of the Fgf2 gene activates the adipogenic and suppresses the osteogenic program in mesenchymal marrow stromal stem cells. Bone. 2010;47(2):360–70. Epub 2010/06/01.

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Zaragosi LE, Wdziekonski B, Villageois P, Keophiphath M, Maumus M, Tchkonia T, et al. Activin a plays a critical role in proliferation and differentiation of human adipose progenitors. Diabetes. 2010;59(10):2513–21. Epub 2010/06/10.

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Suh JM, Gao X, McKay J, McKay R, Salo Z, Graff JM. Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab. 2006;3(1):25–34. Epub 2006/01/10.

    PubMed  CAS  Google Scholar 

  95. Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Adipogenesis and WNT signalling. Trends Endocrinol Metab: TEM. 2009;20(1):16–24. Epub 2008/11/15.

    PubMed  CAS  Google Scholar 

  96. Lowe CE, O’Rahilly S, Rochford JJ. Adipogenesis at a glance. J Cell Sci. 2011;124(Pt 16):2681–6. Epub 2011/08/03.

    PubMed  CAS  Google Scholar 

  97. Feng T, Szabo E, Dziak E, Opas M. Cytoskeletal disassembly and cell rounding promotes adipogenesis from ES cells. Stem Cell Rev. 2010;6(1):74–85. Epub 2010/02/12.

    PubMed  Google Scholar 

  98. Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107(11):4872–7. Epub 2010/03/03.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Wang EA, Israel DI, Kelly S, Luxenberg DP. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3 T3 cells. Growth Factors. 1993;9(1):57–71. Epub 1993/01/01.

    PubMed  CAS  Google Scholar 

  100. Bowers RR, Kim JW, Otto TC, Lane MD. Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc Natl Acad Sci U S A. 2006;103(35):13022–7. Epub 2006/08/19.

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Tang QQ, Otto TC, Lane MD. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A. 2004;101(26):9607–11.

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Hata A, Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A, Massague J. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell. 2000;100(2):229–40. Epub 2000/02/05.

    PubMed  CAS  Google Scholar 

  103. Jin W, Takagi T, Kanesashi SN, Kurahashi T, Nomura T, Harada J, et al. Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev Cell. 2006;10(4):461–71. Epub 2006/04/04.

    PubMed  CAS  Google Scholar 

  104. Dani C. Activins in adipogenesis and obesity. Int J Obes (Lond). 2013;37(2):163–6. Epub 2012/03/01.

    CAS  Google Scholar 

  105. Neubauer M, Fischbach C, Bauer-Kreisel P, Lieb E, Hacker M, Tessmar J, et al. Basic fibroblast growth factor enhances PPARgamma ligand-induced adipogenesis of mesenchymal stem cells. FEBS Lett. 2004;577(1–2):277–83. Epub 2004/11/06.

    PubMed  CAS  Google Scholar 

  106. Kakudo N, Shimotsuma A, Kusumoto K. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells. Biochem Biophys Res Commun. 2007;359(2):239–44. Epub 2007/06/05.

    PubMed  CAS  Google Scholar 

  107. Kimura Y, Ozeki M, Inamoto T, Tabata Y. Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor. Biomaterials. 2003;24(14):2513–21. Epub 2003/04/16.

    PubMed  CAS  Google Scholar 

  108. Yamasaki K, Sasaki T, Nemoto M, Eto Y, Tajima N. Differentiation-induced insulin secretion from nonendocrine cells with engineered human proinsulin cDNA. Biochem Biophys Res Commun. 1999;265(2):361–5. Epub 1999/11/24.

    PubMed  CAS  Google Scholar 

  109. Hutley L, Shurety W, Newell F, McGeary R, Pelton N, Grant J, et al. Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes. 2004;53(12):3097–106. Epub 2004/11/25.

    PubMed  CAS  Google Scholar 

  110. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13. Epub 2008/09/13.

    PubMed  CAS  Google Scholar 

  111. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102(1):77–85. Epub 2007/10/31.

    PubMed  CAS  Google Scholar 

  112. Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9(6):685–93. Epub 2003/06/05.

    PubMed  CAS  Google Scholar 

  113. Crandall DL, Hausman GJ, Kral JG. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation. 1997;4(2):211–32. Epub 1997/06/01.

    PubMed  CAS  Google Scholar 

  114. Nishimura S, Manabe I, Nagasaki M, Hosoya Y, Yamashita H, Fujita H, et al. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes. 2007;56(6):1517–26. Epub 2007/03/29.

    PubMed  CAS  Google Scholar 

  115. Cao Y. Angiogenesis modulates adipogenesis and obesity. J Clin Invest. 2007;117(9):2362–8. Epub 2007/09/06.

    PubMed Central  PubMed  CAS  Google Scholar 

  116. Billon N, Iannarelli P, Monteiro MC, Glavieux-Pardanaud C, Richardson WD, Kessaris N, et al. The generation of adipocytes by the neural crest. Development. 2007;134(12):2283–92. Epub 2007/05/18.

    PubMed  CAS  Google Scholar 

  117. Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, et al. Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell. 2007;129(7):1377–88. Epub 2007/07/03.

    PubMed  CAS  Google Scholar 

  118. Hong KM, Burdick MD, Phillips RJ, Heber D, Strieter RM. Characterization of human fibrocytes as circulating adipocyte progenitors and the formation of human adipose tissue in SCID mice. FASEB J. 2005;19(14):2029–31. Epub 2005/09/29.

    PubMed  CAS  Google Scholar 

  119. Crossno Jr JT, Majka SM, Grazia T, Gill RG, Klemm DJ. Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J Clin Invest. 2006;116(12):3220–8. Epub 2006/12/05.

    PubMed Central  PubMed  CAS  Google Scholar 

  120. Tomiyama K, Murase N, Stolz DB, Toyokawa H, O’Donnell DR, Smith DM, et al. Characterization of transplanted green fluorescent protein + bone marrow cells into adipose tissue. Stem Cells. 2008;26(2):330–8. Epub 2007/11/03.

    PubMed Central  PubMed  Google Scholar 

  121. Sera Y, LaRue AC, Moussa O, Mehrotra M, Duncan JD, Williams CR, et al. Hematopoietic stem cell origin of adipocytes. Exp Hematol. 2009;37(9):1108–20. 20 e1–4. Epub 2009/07/07.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Koh YJ, Kang S, Lee HJ, Choi TS, Lee HS, Cho CH, et al. Bone marrow-derived circulating progenitor cells fail to transdifferentiate into adipocytes in adult adipose tissues in mice. J Clin Invest. 2007;117(12):3684–95.

    PubMed Central  PubMed  CAS  Google Scholar 

  123. Majka SM, Fox KE, Psilas JC, Helm KM, Childs CR, Acosta AS, et al. De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. Proc Natl Acad Sci U S A. 2010;107(33):14781–6. Epub 2010/08/04.

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Wood IS, de Heredia FP, Wang B, Trayhurn P. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc. 2009;68(4):370–7. Epub 2009/08/25.

    PubMed  CAS  Google Scholar 

  125. Marques BG, Hausman DB, Martin RJ. Association of fat cell size and paracrine growth factors in development of hyperplastic obesity. Am J Physiol. 1998;275(6 Pt 2):R1898–908.

    PubMed  CAS  Google Scholar 

  126. Maumus M, Sengenes C, Decaunes P, Zakaroff-Girard A, Bourlier V, Lafontan M, et al. Evidence of in situ proliferation of adult adipose tissue-derived progenitor cells: influence of fat mass microenvironment and growth. J Clin Endocrinol Metab. 2008;93(10):4098–106.

    PubMed  CAS  Google Scholar 

  127. Janke J, Engeli S, Gorzelniak K, Luft FC, Sharma AM. Mature adipocytes inhibit in vitro differentiation of human preadipocytes via angiotensin type 1 receptors. Diabetes. 2002;51(6):1699–707.

    PubMed  CAS  Google Scholar 

  128. Lacasa D, Taleb S, Keophiphath M, Miranville A, Clement K. Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology. 2007;148(2):868–77.

    PubMed  CAS  Google Scholar 

  129. Bourlier V, Zakaroff-Girard A, Miranville A, De Barros S, Maumus M, Sengenes C, et al. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation. 2008;117(6):806–15. Epub 2008/01/30.

    PubMed  CAS  Google Scholar 

  130. Keophiphath M, Achard V, Henegar C, Rouault C, Clement K, Lacasa D. Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol. 2009;23(1):11–24. Epub 2008/10/24.

    PubMed  CAS  Google Scholar 

  131. Molgat AS, Gagnon A, Foster C, Sorisky A. The activation state of macrophages alters their ability to suppress preadipocyte apoptosis. J Endocrinol. 2012;214(1):21–9. Epub 2012/05/05.

    PubMed  CAS  Google Scholar 

  132. Ellis JR, McDonald RB, Stern JS. A diet high in fat stimulates adipocyte proliferation in older (22 month) rats. Exp Gerontol. 1990;25(2):141–8. Epub 1990/01/01.

    PubMed  CAS  Google Scholar 

  133. Roldan M, Macias-Gonzalez M, Garcia R, Tinahones FJ, Martin M. Obesity short-circuits stemness gene network in human adipose multipotent stem cells. FASEB J. 2011;25(12):4111–26. Epub 2011/08/19.

    PubMed  CAS  Google Scholar 

  134. Tang W, Zeve D, Seo J, Jo AY, Graff JM. Thiazolidinediones regulate adipose lineage dynamics. Cell Metab. 2011;14(1):116–22. Epub 2011/07/05.

    PubMed Central  PubMed  CAS  Google Scholar 

  135. Kissebah AH, Vydelingum N, Murray R, Evans DJ, Hartz AJ, Kalkhoff RK, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab. 1982;54(2):254–60.

    PubMed  CAS  Google Scholar 

  136. McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab. 2011;96(11):E1756–60. Epub 2011/08/26.

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Kovacova Z, Tencerova M, Roussel B, Wedellova Z, Rossmeislova L, Langin D, et al. The impact of obesity on secretion of adiponectin multimeric isoforms differs in visceral and subcutaneous adipose tissue. Int J Obes (Lond). 2012;36(10):1360–5. Epub 2011/12/07.

    CAS  Google Scholar 

  138. Amati F, Pennant M, Azuma K, Dube JJ, Toledo FG, Rossi AP, et al. Lower thigh subcutaneous and higher visceral abdominal adipose tissue content both contribute to insulin resistance. Obesity (Silver Spring). 2012;20(5):1115–7. Epub 2012/01/21.

    CAS  Google Scholar 

  139. Michaud A, Drolet R, Noel S, Paris G, Tchernof A. Visceral fat accumulation is an indicator of adipose tissue macrophage infiltration in women. Metabolism. 2012;61(5):689–98. Epub 2011/12/14.

    PubMed  CAS  Google Scholar 

  140. Guo Z, Hensrud DD, Johnson CM, Jensen MD. Regional postprandial fatty acid metabolism in different obesity phenotypes. Diabetes. 1999;48(8):1586–92.

    PubMed  CAS  Google Scholar 

  141. Tordjman J, Divoux A, Prifti E, Poitou C, Pelloux V, Hugol D, et al. Structural and inflammatory heterogeneity in subcutaneous adipose tissue: relation with liver histopathology in morbid obesity. J Hepatol. 2012;56(5):1152–8. Epub 2012/01/17.

    PubMed  Google Scholar 

  142. Pinnick KE, Neville MJ, Fielding BA, Frayn KN, Karpe F, Hodson L. Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans. Diabetes. 2012;61(6):1399–403. Epub 2012/04/12.

    PubMed Central  PubMed  CAS  Google Scholar 

  143. Snijder MB, Dekker JM, Visser M, Yudkin JS, Stehouwer CD, Bouter LM, et al. Larger thigh and hip circumferences are associated with better glucose tolerance: the Hoorn study. Obes Res. 2003;11(1):104–11.

    PubMed  Google Scholar 

  144. Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Yudkin JS, et al. Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study. Diabetes Care. 2004;27(2):372–7.

    PubMed  Google Scholar 

  145. Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond). 2010;34(6):949–59. Epub 2010/01/13.

    CAS  Google Scholar 

  146. Joe AW, Yi L, Even Y, Vogl AW, Rossi FM. Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells. 2009;27(10):2563–70. Epub 2009/08/07.

    PubMed  CAS  Google Scholar 

  147. Tchkonia T, Lenburg M, Thomou T, Giorgadze N, Frampton G, Pirtskhalava T, et al. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am J Physiol Endocrinol Metab. 2007;292(1):E298–307.

    PubMed  CAS  Google Scholar 

  148. Van Harmelen V, Rohrig K, Hauner H. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism. 2004;53(5):632–7.

    PubMed  Google Scholar 

  149. Hauner H, Entenmann G. Regional variation of adipose differentiation in cultured stromal-vascular cells from the abdominal and femoral adipose tissue of obese women. Int J Obes. 1991;15(2):121–6.

    PubMed  CAS  Google Scholar 

  150. Tchoukalova YD, Koutsari C, Votruba SB, Tchkonia T, Giorgadze N, Thomou T, et al. Sex- and Depot-Dependent Differences in Adipogenesis in Normal-Weight Humans. Obesity (Silver Spring). 2010;18(10):1875–80. Epub 2010/03/20.

    Google Scholar 

  151. Tchkonia T, Giorgadze N, Pirtskhalava T, Tchoukalova Y, Karagiannides I, Forse RA, et al. Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. Am J Physiol Regul Integr Comp Physiol. 2002;282(5):R1286–96.

    PubMed  CAS  Google Scholar 

  152. Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110(3):349–55.

    PubMed  CAS  Google Scholar 

  153. Macotela Y, Emanuelli B, Mori MA, Gesta S, Schulz TJ, Tseng YH, et al. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes. 2012;61(7):1691–9. Epub 2012/05/19.

    PubMed Central  PubMed  CAS  Google Scholar 

  154. Permana PA, Nair S, Lee YH, Luczy-Bachman G, Vozarova De Courten B, Tataranni PA. Subcutaneous abdominal preadipocyte differentiation in vitro inversely correlates with central obesity. Am J Physiol Endocrinol Metab. 2004;286(6):E958–62.

    PubMed  CAS  Google Scholar 

  155. Cantile M, Procino A, D’Armiento M, Cindolo L, Cillo C. HOX gene network is involved in the transcriptional regulation of in vivo human adipogenesis. J Cell Physiol. 2003;194(2):225–36.

    PubMed  CAS  Google Scholar 

  156. Vohl MC, Sladek R, Robitaille J, Gurd S, Marceau P, Richard D, et al. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes Res. 2004;12(8):1217–22.

    PubMed  CAS  Google Scholar 

  157. Gesta S, Bluher M, Yamamoto Y, Norris AW, Berndt J, Kralisch S, et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A. 2006;103(17):6676–81.

    PubMed Central  PubMed  CAS  Google Scholar 

  158. Tchkonia T, Giorgadze N, Pirtskhalava T, Thomou T, DePonte M, Koo A, et al. Fat depot-specific characteristics are retained in strains derived from single human preadipocytes. Diabetes. 2006;55(9):2571–8.

    PubMed  CAS  Google Scholar 

  159. Cartwright MJ, Schlauch K, Lenburg ME, Tchkonia T, Pirtskhalava T, Cartwright A, et al. Aging, depot origin, and preadipocyte gene expression. J Gerontol A Biol Sci Med Sci. 2010;65(3):242–51. Epub 2010/01/29.

    PubMed  Google Scholar 

  160. Yamamoto Y, Gesta S, Lee KY, Tran TT, Saadatirad P, Kahn CR. Adipose depots possess unique developmental gene signatures. Obesity (Silver Spring). 2010;18(5):872–8. Epub 2010/01/30.

    CAS  Google Scholar 

  161. Monteiro MC, Sanyal M, Cleary ML, Sengenes C, Bouloumie A, Dani C, et al. PBX1: a novel stage-specific regulator of adipocyte development. Stem Cells. 2011;29(11):1837–48. Epub 2011/09/17.

    PubMed  CAS  Google Scholar 

  162. Shi H, Clegg DJ. Sex differences in the regulation of body weight. Physiol Behav. 2009;97(2):199–204. Epub 2009/03/03.

    PubMed  CAS  Google Scholar 

  163. Karastergiou K, Fried SK. Sex differences in human adipose tissues—the biology of pear shape. Biol Sex Differ. 2012;3(1):13. Epub 2012/06/02.

    PubMed Central  PubMed  Google Scholar 

  164. de Ridder CM, Bruning PF, Zonderland ML, Thijssen JH, Bonfrer JM, Blankenstein MA, et al. Body fat mass, body fat distribution, and plasma hormones in early puberty in females. J Clin Endocrinol Metab. 1990;70(4):888–93. Epub 1990/04/01.

    PubMed  Google Scholar 

  165. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341(8850):938–41.

    PubMed  CAS  Google Scholar 

  166. Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest. 1995;96(1):88–98.

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yourka D. Tchoukalova Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

White, U.A., Tchoukalova, Y.D. (2014). Adipose Stem Cells and Adipogenesis. In: Fantuzzi, G., Braunschweig, C. (eds) Adipose Tissue and Adipokines in Health and Disease. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-770-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-770-9_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-769-3

  • Online ISBN: 978-1-62703-770-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics