Skip to main content

Triplex-Mediated Genome Targeting and Editing

  • Protocol
  • First Online:
Gene Correction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1114))

Abstract

Genome targeting and editing in vitro and in vivo can be achieved through an interplay of exogenously introduced molecules and the induction of endogenous recombination machinery. The former includes a repertoire of sequence-specific binding molecules for targeted induction and appropriation of this machinery, such as by triplex-forming oligonucleotides (TFOs) or triplex-forming peptide nucleic acids (PNAs) and recombinagenic donor DNA, respectively. This versatile targeting and editing via recombination approach facilitates high-fidelity and low-off-target genome mutagenesis, repair, expression, and regulation.

Herein, we describe the current state-of-the-art in triplex-mediated genome targeting and editing with a perspective towards potential translational and therapeutic applications. We detail several materials and methods for the design, delivery, and use of triplex-forming and recombinagenic molecules for mediating and introducing specific, heritable, and safe genomic modifications. Furthermore we denote some guidelines for endogenous genome targeting and editing site identification and techniques to test targeting and editing efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids—a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  2. Felsenfeld G, Davies DR, Rich A (1957) Formation of a 3-stranded polynucleotide molecule. J Am Chem Soc 79:2023–2024

    Article  CAS  Google Scholar 

  3. Moser HE, Dervan PB (1987) Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238:645–650

    Article  CAS  PubMed  Google Scholar 

  4. Le Doan T et al (1987) Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-[alpha]-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acids Res 15:7749–7760

    Article  PubMed Central  PubMed  Google Scholar 

  5. Seidman MM (2004) Oligonucleotide mediated gene targeting in mammalian cells. Curr Pharm Biotechnol 5:421–430

    Article  CAS  PubMed  Google Scholar 

  6. Demidov VV et al (1994) Stability of peptide nucleic-acids in human serum and cellular-extracts. Biochem Pharmacol 48:1310–1313

    Article  CAS  PubMed  Google Scholar 

  7. Faruqi AF, Egholm M, Glazer PM (1998) Peptide nucleic acid-targeted mutagenesis of a chromosomal gene in mouse cells. Proc Natl Acad Sci U S A 95:1398–1403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chin JY et al (2008) Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids. Proc Natl Acad Sci U S A 105:13514–13519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Schleifman EB et al (2011) Targeted disruption of the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids. Chem Biol 18:1189–1198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hanvey JC et al (1992) Antisense and antigene properties of peptide nucleic acids. Science 258:1481–1485

    Article  CAS  PubMed  Google Scholar 

  11. Koppelhus U, Zachar V, Nielsen PE, Liu XD, EugenOlsen J, Ebbesen P (1997) Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA. Nucleic Acids Res 25:2167–2173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Praseuth D et al (1996) Peptide nucleic acids directed to the promoter of the alpha-chain of the interleukin-2 receptor. Biochim Biophys Acta 1309:226–238

    Article  CAS  PubMed  Google Scholar 

  13. Nielsen PE, Egholm M, Berg RH, Buchardt O (1993) Sequence specific-inhibition of DNA restriction enzyme cleavage by PNA. Nucleic Acids Res 21:197–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mollegaard NE, Buchardt O, Egholm M, Nielsen PE (1994) Peptide nucleic acid·DNA strand displacement loops as artificial transcription promoters. Proc Natl Acad Sci U S A 91:3892–3895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chin JY, Reza F, Glazer PM (2013) Triplex-forming peptide nucleic acids induce heritable elevations in gamma-globin expression in hematopoietic progenitor cells. Mol Ther 21:580–587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Faria M et al (2000) Targeted inhibition of transcription elongation in cells mediated by triplex-forming oligonucleotides. Proc Natl Acad Sci U S A 97:3862–3867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Birg F et al (1990) Inhibition of simian virus 40 DNA replication in CV-1 cells by an oligodeoxynucleotide covalently linked to an intercalating agent. Nucleic Acids Res 18:2901–2908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Volkmann S, Jendis J, Frauendorf A, Moelling K (1995) Inhibition of HIV-1 reverse transcription by triple-helix forming oligonucleotides with viral-RNA. Nucleic Acids Res 23:1204–1212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Maher LJ, Wold B, Dervan PB (1989) Inhibition of DNA-binding proteins by oligonucleotide-directed triple helix formation. Science 245:725–730

    Article  CAS  PubMed  Google Scholar 

  20. Francois JC, Saisonbehmoaras T, Thuong NT, Helene C (1989) Inhibition of restriction endonuclease cleavage via triple helix formation by homopyrimidine oligonucleotides. Biochemistry 28:9617–9619

    Article  CAS  PubMed  Google Scholar 

  21. Hanvey JC, Shimizu M, Wells RD (1990) Site-specific inhibition of EcoRI restriction modification enzymes by a DNA triple helix. Nucleic Acids Res 18:157–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Mayfield C et al (1994) Triplex formation by the human Ha-ras promoter inhibits Sp1 binding and in vitro transcription. J Biol Chem 269:18232–18238

    CAS  PubMed  Google Scholar 

  23. Havre PA, Gunther EJ, Gasparro FP, Glazer PM (1993) Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen. Proc Natl Acad Sci U S A 90:7879–7883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Takasugi M et al (1991) Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide. Proc Natl Acad Sci U S A 88:5602–5606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vasquez KM, Wensel TG, Hogan ME, Wilson JH (1996) High-efficiency triple-helix-mediated photo-cross-linking at a targeted site within a selectable mammalian gene. Biochemistry 35:10712–10719

    Article  CAS  PubMed  Google Scholar 

  26. Wang G, Seidman MM, Glazer PM (1996) Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 271:802–805

    Article  CAS  PubMed  Google Scholar 

  27. Vasquez KM, Narayanan L, Glazer PM (2000) Specific mutations induced by triplex-forming oligonucleotides in mice. Science 290:530–533

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Tolstonog G, Shoeman RL, Traub P (1996) Selective binding of specific mouse genomic DNA fragments by mouse vimentin filaments in vitro. DNA Cell Biol 15:209–225

    Article  PubMed  Google Scholar 

  29. Chan PP, Lin M, Faruqi AF, Powell J, Seidman MM, Glazer PM (1999) Targeted correction of an episomal gene in mammalian cells by a short DNA fragment tethered to a triplex-forming oligonucleotide. J Biol Chem 274:11541–11548

    Article  CAS  PubMed  Google Scholar 

  30. Datta HJ, Chan PP, Vasquez KM, Gupta RC, Glazer PM (2001) Triplex-induced recombination in human cell-free extracts—dependence on XPA and HsRad51. J Biol Chem 276:18018–18023

    Article  CAS  PubMed  Google Scholar 

  31. Luo ZJ, Macris MA, Faruqi AF, Glazer PM (2000) High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells. Proc Natl Acad Sci U S A 97:9003–9008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Rogers FA, Manoharan M, Rabinovitch P, Ward DC, Glazer PM (2004) Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides. Nucleic Acids Res 32:6595–6604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. McNeer NA, Chin JY, Schleifman EB, Fields RJ, Glazer PM, Saltzman WM (2011) Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors. Mol Ther 19:172–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Branden LJ, Mohamed AJ, Smith CIE (1999) A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 17:784–787

    Article  CAS  PubMed  Google Scholar 

  35. Vasquez KM, Dagle JM, Weeks DL, Glazer PM (2001) Chromosome targeting at short polypurine sites by cationic triplex-forming oligonucleotides. J Biol Chem 276:38536–38541

    Article  CAS  PubMed  Google Scholar 

  36. Lacroix L et al (1999) Triplex formation by oligonucleotides containing 5-(1-propynyl)-2′-deoxyuridine: decreased magnesium dependence and improved intracellular gene targeting. Biochemistry 38:1893–1901

    Article  CAS  PubMed  Google Scholar 

  37. Puri N et al (2002) Minimum number of 2′-O-(2-aminoethyl) residues required for gene knockout activity by triple helix forming oligonucleotides. Biochemistry 41:7716–7724

    Article  CAS  PubMed  Google Scholar 

  38. Wang G, Glazer PM (1995) Altered repair of targeted psoralen photoadducts in the context of an oligonucleotide-mediated triple-helix. J Biol Chem 270:22595–22601

    Article  CAS  PubMed  Google Scholar 

  39. Majumdar A et al (2003) Cell cycle modulation of gene targeting by a triple helix-forming oligonucleotide. J Biol Chem 278:11072–11077

    Article  CAS  PubMed  Google Scholar 

  40. Macris MA, Glazer PM (2003) Transcription dependence of chromosomal gene targeting by triplex-forming oligonucleotides. J Biol Chem 278:3357–3362

    Article  CAS  PubMed  Google Scholar 

  41. Vasquez KM, Wang G, Havre PA, Glazer PM (1999) Chromosomal mutations induced by triplex-forming oligonucleotides in mammalian cells. Nucleic Acids Res 27:1176–1181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sargent RG, Rolig RL, Kilburn AE, Adair GM, Wilson JH, Nairn RS (1997) Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1. Proc Natl Acad Sci U S A 94:13122–13127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Faruqi AF, Seidman MM, Segal DJ, Carroll D, Glazer PM (1996) Recombination induced by triple-helix-targeted DNA damage in mammalian cells. Mol Cell Biol 16:6820–6828

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Sandor Z, Bredberg A (1995) Triple-helix directed psoralen adducts induce a low-frequency of recombination in an SV40 shuttle vector. Biochim Biophys Acta 1263:235–240

    Article  PubMed  Google Scholar 

  45. Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM (2000) Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol 20:990–1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Knauert MP, Kalish JM, Hegan DC, Glazer PM (2006) Triplex-stimulated intermolecular recombination at a single-copy genomic target. Mol Ther 14:392–400

    Article  CAS  PubMed  Google Scholar 

  47. Knauert MP et al (2005) Distance and affinity dependence of triplex-induced recombination. Biochemistry 44:3856–3864

    Article  CAS  PubMed  Google Scholar 

  48. Samson M et al (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725

    Article  CAS  PubMed  Google Scholar 

  49. Shen H et al (1999) Intrinsic human immunodeficiency virus type 1 resistance of hematopoietic stem cells despite coreceptor expression. J Virol 73:728–737

    CAS  PubMed Central  PubMed  Google Scholar 

  50. McNeer NA et al (2012) Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo. Gene Ther 20:658–669

    Article  PubMed Central  PubMed  Google Scholar 

  51. Sazani P et al (2001) Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res 29:3965–3974

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Koppelhus U, Awasthi SK, Zachar V, Holst HU, Ebbesen P, Nielsen PE (2002) Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev 12:51–63

    Article  CAS  PubMed  Google Scholar 

  53. Egholm M, Christensen L, Dueholm KL, Buchardt O, Coull J, Nielsen PE (1995) Efficient pH-independent sequence-specific DNA-binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23:217–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Diviacco S, Rapozzi V, Xodo L, Helene C, Quadrifoglio F, Giovannangeli C (2001) Site-directed inhibition of DNA replication by triple helix formation. FASEB J 15:2660–2668

    Article  CAS  PubMed  Google Scholar 

  55. Shahid KA et al (2006) Targeted cross-linking of the human beta-globin gene in living cells mediated by a triple helix forming oligonucleotide. Biochemistry 45:1970–1978

    Article  CAS  PubMed  Google Scholar 

  56. Orou A, Fechner B, Utermann G, Menzel HJ (1995) Allele-specific competitive blocker PCR—a one-step method with applicability to pool screening. Hum Mutat 6:163–169

    Article  CAS  PubMed  Google Scholar 

  57. Parsons BL, McKinzie PB, Heflich RH (2005) Allele-specific competitive blocker—PCR detection of rare base substitution. Methods Mol Biol 291:235–245

    CAS  PubMed  Google Scholar 

  58. Radhakrishnan I, Patel DJ (1993) Solution structure of a purine.purine.pyrimidine DNA triplex containing G.GC and T.AT triples. Structure 1:135–152

    Article  CAS  PubMed  Google Scholar 

  59. Radhakrishnan I, Patel DJ (1994) Solution structure of a pyrimidine.purine.pyrimidine DNA triplex containing T.AT, C+.GC and G.TA triples. Structure 2:17–32

    Article  CAS  PubMed  Google Scholar 

  60. Yeh JI et al (2010) The crystal structure of non-modified and bipyridine-modified PNA duplexes. Chemistry 16:11867–11875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge members of the Glazer Laboratory for helpful discussions. This work was supported by a National Institutes of Health (NIH) grant R01HL082655 and by a Doris Duke Innovations in Clinical Research Award (to P.M.G.). A National Institute of Diabetes and Digestive and Kidney Diseases Experimental and Human Pathobiology Postdoctoral Fellowship from NIH grant T32DK007556 also provided support (to F.R.). The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Reza, F., Glazer, P.M. (2014). Triplex-Mediated Genome Targeting and Editing. In: Storici, F. (eds) Gene Correction. Methods in Molecular Biology, vol 1114. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-761-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-761-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-760-0

  • Online ISBN: 978-1-62703-761-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics