Skip to main content

RecTEPsy-Mediated Recombineering in Pseudomonas syringae

  • Protocol
  • First Online:
Gene Correction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1114))

Abstract

A recently developed Pseudomonas syringae recombineering system simplifies the procedure for installing specific mutations at a chosen genomic locus. The procedure involves transforming P. syringae cells expressing recombineering functions with a PCR product that contains desired changes flanked by sequences homologous to a target location. Cells transformed with the substrate undergo homologous recombination between the genomic DNA and the recombineering substrate. The recombinants are found by selection for traits carried by the recombineering substrate, usually antibiotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy KC (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in escherichia coli. J Bacteriol 180(8):2063–2071

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in escherichia coli. Nat Genet 20(2):123–128

    Article  CAS  PubMed  Google Scholar 

  3. Dutra BE, Sutera VA Jr, Lovett ST (2007) RecA-independent recombination is efficient but limited by exonucleases. Proc Natl Acad Sci U S A 104(1):216–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Winans SC, Elledge SJ, Krueger JH, Walker GC (1985) Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol 161(3):1219–1221

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Lovett ST, Hurley RL, Sutera VA Jr, Aubuchon RH, Lebedeva MA (2002) Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways. Genetics 160(3):851–859

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Cassuto E, Radding CM (1971) Mechanism for the action of lambda exonuclease in genetic recombination. Nat New Biol 229(1):13–16

    Article  CAS  PubMed  Google Scholar 

  7. Little JW (1967) An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction. J Biol Chem 242(4):679–686

    CAS  PubMed  Google Scholar 

  8. Kmiec E, Holloman WK (1981) Beta protein of bacteriophage lambda promotes renaturation of DNA. J Biol Chem 256(24):12636–12639

    CAS  PubMed  Google Scholar 

  9. Karakousis G, Ye N, Li Z, Chiu SK, Reddy G, Radding CM (1998) The beta protein of phage lambda binds preferentially to an intermediate in DNA renaturation. J Mol Biol 276(4):721–731

    Article  CAS  PubMed  Google Scholar 

  10. Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98(12):6742–6746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lesic B, Rahme LG (2008) Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Mol Biol 9:20

    Article  PubMed Central  PubMed  Google Scholar 

  12. Datta S, Costantino N, Zhou X, Court DL (2008) Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc Natl Acad Sci U S A 105(5):1626–1631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Swingle B, Bao Z, Markel E, Chambers A, Cartinhour S (2010) Recombineering using RecTE from pseudomonas syringae. Appl Environ Microbiol 76(15):4960–4968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. van Kessel JC, Hatfull GF (2007) Recombineering in mycobacterium tuberculosis. Nat Methods 4(2):147–152

    Article  PubMed  Google Scholar 

  15. van Kessel JC, Hatfull GF (2008) Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 67(5):1094–1107

    Article  PubMed  Google Scholar 

  16. van Kessel JC, Marinelli LJ, Hatfull GF (2008) Recombineering mycobacteria and their phages. Nat Rev Microbiol 6(11):851–857

    Article  PubMed Central  PubMed  Google Scholar 

  17. van Pijkeren JP, Britton RA (2012) High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res 40(10):e76. doi:gks147 [pii] 10.1093/nar/gks147

    Article  PubMed Central  PubMed  Google Scholar 

  18. van Pijkeren JP, Neoh KM, Sirias D, Findley AS, Britton RA (2012) Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri. Bioengineered 3(4):209–217. doi: 21049 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  19. Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4(2):206–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44(2):301–307

    CAS  PubMed  Google Scholar 

  21. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580

    Article  CAS  PubMed  Google Scholar 

  22. Ried JL, Collmer A (1987) An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57(2–3):239–246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. The USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Swingle, B. (2014). RecTEPsy-Mediated Recombineering in Pseudomonas syringae . In: Storici, F. (eds) Gene Correction. Methods in Molecular Biology, vol 1114. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-761-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-761-7_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-760-0

  • Online ISBN: 978-1-62703-761-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics