Skip to main content

Variability in Human In Vitro Enzyme Kinetics

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1113))

Abstract

There are many factors which are known to cause variability in human in vitro enzyme kinetic data. Factors such as the source of enzyme and how it was prepared, the genetics and background of the donor, how the in vitro studies are designed, and how the data are analyzed contribute to variability in the resulting kinetic parameters. It is important to consider not only the factors which cause variability within an experiment, such as selection of a probe substrate, but also those that cause variability when comparing kinetic data across studies and laboratories. For example, the artificial nature of the microsomal lipid membrane and microenvironment in some recombinantly expressed enzymes, relative to those found in native tissue microsomes, has been shown to influence enzyme activity and thus can be a source of variability when comparing across the two different systems. All of these factors, and several others, are discussed in detail in the chapter below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270(1):414–423

    CAS  PubMed  Google Scholar 

  2. Gomez-Lechon MJ, Castell JV, Donato MT (2007) Hepatocytes–the choice to investigate drug metabolism and toxicity in man: in vitro variability as a reflection of in vivo. Chem Biol Interact 168(1):30–50

    CAS  PubMed  Google Scholar 

  3. Rowland YK, Rostami-Hodjegan A, Tucker G (2004) Abundance of cytochromes P450 in human liver: a meta analysis. Br J Clin Pharmacol 57(5):687–688

    Google Scholar 

  4. Hallifax D, Houston JB (2009) Methodological uncertainty in quantitative prediction of human hepatic clearance from in vitro experimental systems. Curr Drug Metab 10(3):307–321

    CAS  PubMed  Google Scholar 

  5. Gomez-Lechon MJ, Donato MT, Castell JV, Jover R (2004) Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab 5(5):443–462

    CAS  PubMed  Google Scholar 

  6. Pearce RE, McIntyre CJ, Madan A, Sanzgiri U, Draper AJ, Bullock PL, Cook DC, Burton LA, Latham J, Nevins C, Parkinson A (1996) Effects of freezing, thawing, and storing human liver microsomes on cytochrome P450 activity. Arch Biochem Biophys 331(2):145–169

    CAS  PubMed  Google Scholar 

  7. Zhang QY, Dunbar D, Ostrowska A, Zeisloft S, Yang J, Kaminsky LS (1999) Characterization of human small intestinal cytochromes P-450. Drug Metab Dispos 27(7):804–809

    CAS  PubMed  Google Scholar 

  8. Galetin A, Houston JB (2006) Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharmacol Exp Ther 318(3):1220–1229

    CAS  PubMed  Google Scholar 

  9. McGinnity DF, Soars MG, Urbanowicz RA, Riley RJ (2004) Evaluation of fresh and cryopreserved hepatocytes as in vitro drug metabolism tools for the prediction of metabolic clearance. Drug Metab Dispos 32(11):1247–1253

    CAS  PubMed  Google Scholar 

  10. Ahn T, Guengerich FP, Yun CH (1998) Membrane insertion of cytochrome P450 1A2 promoted by anionic phospholipids. Biochemistry 37(37):12860–12866

    CAS  PubMed  Google Scholar 

  11. Wu ES, Yang CS (1984) Lateral diffusion of cytochrome P-450 in phospholipid bilayers. Biochemistry 23(1):28–33

    CAS  PubMed  Google Scholar 

  12. Yun CH, Ahn T, Guengerich FP (1998) Conformational change and activation of cytochrome P450 2B1 induced by salt and phospholipid. Arch Biochem Biophys 356(2):229–238

    CAS  PubMed  Google Scholar 

  13. Remmel RP, Burchell B (1993) Validation and use of cloned, expressed human drug-metabolizing enzymes in heterologous cells for analysis of drug metabolism and drug-drug interactions. Biochem Pharmacol 46(4):559–566

    CAS  PubMed  Google Scholar 

  14. Das A, Sligar SG (2009) Modulation of the cytochrome P450 reductase redox potential by the phospholipid bilayer. Biochemistry 48(51):12104–12112

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Kim KH, Ahn T, Yun CH (2003) Membrane properties induced by anionic phospholipids and phosphatidylethanolamine are critical for the membrane binding and catalytic activity of human cytochrome P450 3A4. Biochemistry 42(51):15377–15387

    CAS  PubMed  Google Scholar 

  16. Venkatakrishnan K, von Moltke LL, Court MH, Harmatz JS, Crespi CL, Greenblatt DJ (2000) Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: ratios of accessory proteins as sources of discrepancies between the approaches. Drug Metab Dispos 28(12):1493–1504

    CAS  PubMed  Google Scholar 

  17. Jushchyshyn MI, Hutzler JM, Schrag ML, Wienkers LC (2005) Catalytic turnover of pyrene by CYP3A4: evidence that cytochrome b5 directly induces positive cooperativity. Arch Biochem Biophys 438(1):21–28

    CAS  PubMed  Google Scholar 

  18. Yamazaki H, Nakamura M, Komatsu T, Ohyama K, Hatanaka N, Asahi S, Shimada N, Guengerich FP, Shimada T, Nakajima M, Yokoi T (2002) Roles of NADPH-P450 reductase and apo- and holo-cytochrome b5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli. Protein Expr Purif 24(3):329–337

    CAS  PubMed  Google Scholar 

  19. Locuson CW, Wienkers LC, Jones JP, Tracy TS (2007) CYP2C9 protein interactions with cytochrome b(5): effects on the coupling of catalysis. Drug Metab Dispos 35(7):1174–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Yamazaki H, Nakajima M, Nakamura M, Asahi S, Shimada N, Gillam EM, Guengerich FP, Shimada T, Yokoi T (1999) Enhancement of cytochrome P-450 3A4 catalytic activities by cytochrome b(5) in bacterial membranes. Drug Metab Dispos 27(9):999–1004

    CAS  PubMed  Google Scholar 

  21. Christensen H, Hestad AL, Molden E, Mathiesen L (2011) CYP3A5-mediated metabolism of midazolam in recombinant systems is highly sensitive to NADPH-cytochrome P450 reductase activity. Xenobiotica 41(1):1–5

    CAS  PubMed  Google Scholar 

  22. Subramanian M, Low M, Locuson CW, Tracy TS (2009) CYP2D6-CYP2C9 protein-protein interactions and isoform-selective effects on substrate binding and catalysis. Drug Metab Dispos 37(8):1682–1689

    CAS  PubMed  Google Scholar 

  23. Hermann M, Kase ET, Molden E, Christensen H (2006) Evaluation of microsomal incubation conditions on CYP3A4-mediated metabolism of cyclosporine A by a statistical experimental design. Curr Drug Metab 7(3):265–271

    CAS  PubMed  Google Scholar 

  24. Maenpaa J, Hall SD, Ring BJ, Strom SC, Wrighton SA (1998) Human cytochrome P450 3A (CYP3A) mediated midazolam metabolism: the effect of assay conditions and regioselective stimulation by alpha-naphthoflavone, terfenadine and testosterone. Pharmacogenetics 8(2):137–155

    CAS  PubMed  Google Scholar 

  25. Gemzik B, Halvorson MR, Parkinson A (1990) Pronounced and differential effects of ionic strength and pH on testosterone oxidation by membrane-bound and purified forms of rat liver microsomal cytochrome P-450. J Steroid Biochem 35(3–4):429–440

    CAS  PubMed  Google Scholar 

  26. Soars MG, Ring BJ, Wrighton SA (2003) The effect of incubation conditions on the enzyme kinetics of udp-glucuronosyltransferases. Drug Metab Dispos 31(6):762–767

    CAS  PubMed  Google Scholar 

  27. Chauret N, Gauthier A, Nicoll-Griffith DA (1998) Effect of common organic solvents on in vitro cytochrome P450-mediated metabolic activities in human liver microsomes. Drug Metab Dispos 26(1):1–4

    CAS  PubMed  Google Scholar 

  28. Vuppugalla R, Chang SY, Zhang H, Marathe PH, Rodrigues DA (2007) Effect of commonly used organic solvents on the kinetics of cytochrome P450 2B6- and 2C8-dependent activity in human liver microsomes. Drug Metab Dispos 35(11):1990–1995

    CAS  PubMed  Google Scholar 

  29. Tang C, Shou M, Rodrigues AD (2000) Substrate-dependent effect of acetonitrile on human liver microsomal cytochrome P450 2C9 (CYP2C9) activity. Drug Metab Dispos 28(5):567–572

    CAS  PubMed  Google Scholar 

  30. Busby WF Jr, Ackermann JM, Crespi CL (1999) Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab Dispos 27(2):246–249

    CAS  PubMed  Google Scholar 

  31. VandenBrink BM, Foti RS, Rock DA, Wienkers LC, Wahlstrom JL (2011) Evaluation of CYP2C8 inhibition in vitro: utility of montelukast as a selective CYP2C8 probe substrate. Drug Metab Dispos 39(9):1546–1554

    CAS  PubMed  Google Scholar 

  32. Baer BR, Wienkers LC, Rock DA (2007) Time-dependent inactivation of P450 3A4 by raloxifene: identification of Cys239 as the site of apoprotein alkylation. Chem Res Toxicol 20(6):954–964

    CAS  PubMed  Google Scholar 

  33. Kenworthy KE, Bloomer JC, Clarke SE, Houston JB (1999) CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol 48(5):716–727

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Kumar V, Wahlstrom JL, Rock DA, Warren CJ, Gorman LA, Tracy TS (2006) CYP2C9 inhibition: impact of probe selection and pharmacogenetics on in vitro inhibition profiles. Drug Metab Dispos 34(12):1966–1975

    CAS  PubMed  Google Scholar 

  35. Foti RS, Wahlstrom JL (2008) CYP2C19 inhibition: the impact of substrate probe selection on in vitro inhibition profiles. Drug Metab Dispos 36(3):523–528

    CAS  PubMed  Google Scholar 

  36. Foti RS, Rock DA, Wienkers LC, Wahlstrom JL (2010) Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab Dispos 38(6):981–987

    CAS  PubMed  Google Scholar 

  37. Greenblatt DJ, Venkatakrishnan K, Harmatz JS, Parent SJ, von Moltke LL (2010) Sources of variability in ketoconazole inhibition of human cytochrome P450 3A in vitro. Xenobiotica 40(10):713–720

    CAS  PubMed  Google Scholar 

  38. von Moltke LL, Greenblatt DJ, Schmider J, Duan SX, Wright CE, Harmatz JS, Shader RI (1996) Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J Clin Pharmacol 36(9):783–791

    Google Scholar 

  39. Obach RS (1996) The importance of nonspecific binding in in vitro matrices, its impact on enzyme kinetic studies of drug metabolism reactions, and implications for in vitro-in vivo correlations. Drug Metab Dispos 24(10):1047–1049

    CAS  PubMed  Google Scholar 

  40. Chiba M, Xu X, Nishime JA, Balani SK, Lin JH (1997) Hepatic microsomal metabolism of montelukast, a potent leukotriene D4 receptor antagonist, in humans. Drug Metab Dispos 25(9):1022–1031

    CAS  PubMed  Google Scholar 

  41. Walsky RL, Gaman EA, Obach RS (2005) Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol 45(1):68–78

    CAS  PubMed  Google Scholar 

  42. Walsky RL, Obach RS (2004) Validated assays for human cytochrome P450 activities. Drug Metab Dispos 32(6):647–660

    CAS  PubMed  Google Scholar 

  43. Houston JB, Kenworthy KE (2000) In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model. Drug Metab Dispos 28(3):246–254

    CAS  PubMed  Google Scholar 

  44. Tracy TS (2003) Atypical enzyme kinetics: their effect on in vitro-in vivo pharmacokinetic predictions and drug interactions. Curr Drug Metab 4(5):341–346

    CAS  PubMed  Google Scholar 

  45. Zhou SF, Di YM, Chan E, Du YM, Chow VD, Xue CC, Lai X, Wang JC, Li CG, Tian M, Duan W (2008) Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab 9(8):738–784

    CAS  PubMed  Google Scholar 

  46. Maruo Y, Iwai M, Mori A, Sato H, Takeuchi Y (2005) Polymorphism of UDP-glucuronosyltransferase and drug metabolism. Curr Drug Metab 6(2):91–99

    CAS  PubMed  Google Scholar 

  47. Maekawa K, Harakawa N, Sugiyama E, Tohkin M, Kim SR, Kaniwa N, Katori N, Hasegawa R, Yasuda K, Kamide K, Miyata T, Saito Y, Sawada J (2009) Substrate-dependent functional alterations of seven CYP2C9 variants found in Japanese subjects. Drug Metab Dispos 37(9):1895–1903

    CAS  PubMed  Google Scholar 

  48. Aoyama T, Yamano S, Waxman DJ, Lapenson DP, Meyer UA, Fischer V, Tyndale R, Inaba T, Kalow W, Gelboin HV et al (1989) Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem 264(18):10388–10395

    CAS  PubMed  Google Scholar 

  49. Thummel KE, Wilkinson GR (1998) In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 38:389–430

    CAS  PubMed  Google Scholar 

  50. Wojnowski L (2004) Genetics of the variable expression of CYP3A in humans. Ther Drug Monit 26(2):192–199

    CAS  PubMed  Google Scholar 

  51. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(4):383–391

    CAS  PubMed  Google Scholar 

  52. Xie HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR (2004) Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 5(3):243–272

    CAS  PubMed  Google Scholar 

  53. Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, Hamman MA, Hall SD, Wrighton SA (2002) Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos 30(8):883–891

    CAS  PubMed  Google Scholar 

  54. Yu KS, Cho JY, Jang IJ, Hong KS, Chung JY, Kim JR, Lim HS, Oh DS, Yi SY, Liu KH, Shin JG, Shin SG (2004) Effect of the CYP3A5 genotype on the pharmacokinetics of intravenous midazolam during inhibited and induced metabolic states. Clin Pharmacol Ther 76(2):104–112

    CAS  PubMed  Google Scholar 

  55. Dennison JB, Kulanthaivel P, Barbuch RJ, Renbarger JL, Ehlhardt WJ, Hall SD (2006) Selective metabolism of vincristine in vitro by CYP3A5. Drug Metab Dispos 34(8):1317–1327

    CAS  PubMed  Google Scholar 

  56. Dennison JB, Jones DR, Renbarger JL, Hall SD (2007) Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. J Pharmacol Exp Ther 321(2):553–563

    CAS  PubMed  Google Scholar 

  57. Guilhaumou R, Simon N, Quaranta S, Verschuur A, Lacarelle B, Andre N, Solas C (2011) Population pharmacokinetics and pharmacogenetics of vincristine in paediatric patients treated for solid tumour diseases. Cancer Chemother Pharmacol 68(5):1191–1198

    CAS  PubMed  Google Scholar 

  58. Guilhaumou R, Solas C, Bourgarel-Rey V, Quaranta S, Rome A, Simon N, Lacarelle B, Andre N (2011) Impact of plasma and intracellular exposure and CYP3A4, CYP3A5, and ABCB1 genetic polymorphisms on vincristine-induced neurotoxicity. Cancer Chemother Pharmacol 68(6):1633–1638

    CAS  PubMed  Google Scholar 

  59. Moore AS, Norris R, Price G, Nguyen T, Ni M, George R, van Breda K, Duley J, Charles B, Pinkerton R (2011) Vincristine pharmacodynamics and pharmacogenetics in children with cancer: a limited-sampling, population modelling approach. J Paediatr Child Health 47(12):875–882

    PubMed  Google Scholar 

  60. Khan KK, He YQ, Correia MA, Halpert JR (2002) Differential oxidation of mifepristone by cytochromes P450 3A4 and 3A5: selective inactivation of P450 3A4. Drug Metab Dispos 30(9):985–990

    CAS  PubMed  Google Scholar 

  61. Gibbs MA, Thummel KE, Shen DD, Kunze KL (1999) Inhibition of cytochrome P-450 3A (CYP3A) in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab Dispos 27(2):180–187

    CAS  PubMed  Google Scholar 

  62. McConn DJ 2nd, Lin YS, Allen K, Kunze KL, Thummel KE (2004) Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab Dispos 32(10):1083–1091

    CAS  PubMed  Google Scholar 

  63. Wang YH, Jones DR, Hall SD (2005) Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil. Drug Metab Dispos 33(5):664–671

    CAS  PubMed  Google Scholar 

  64. Isoherranen N, Ludington SR, Givens RC, Lamba JK, Pusek SN, Dees EC, Blough DK, Iwanaga K, Hawke RL, Schuetz EG, Watkins PB, Thummel KE, Paine MF (2008) The influence of CYP3A5 expression on the extent of hepatic CYP3A inhibition is substrate-dependent: an in vitro-in vivo evaluation. Drug Metab Dispos 36(1):146–154

    CAS  PubMed  Google Scholar 

  65. Wang Y-H, Jin Y, Ho H, Hilligoss JK, Hu Z, Gorski JC, Hall SD (2005) Effect of CYP3A5 genotype on the extent of CYP3A inhibition by verapamil. Clin Pharmacol Ther 77(2):P3

    Google Scholar 

  66. Pearson JT, Wahlstrom JL, Dickmann LJ, Kumar S, Halpert JR, Wienkers LC, Foti RS, Rock DA (2007) Differential time-dependent inactivation of P450 3A4 and P450 3A5 by raloxifene: a key role for C239 in quenching reactive intermediates. Chem Res Toxicol 20(12):1778–1786

    CAS  PubMed  Google Scholar 

  67. Hiratsuka M (2012) In vitro assessment of the allelic variants of cytochrome P450. Drug Metab Pharmacokinet 27(1):68–84

    CAS  PubMed  Google Scholar 

  68. Wang B, Wang J, Huang SQ, Su HH, Zhou SF (2009) Genetic polymorphism of the human cytochrome P450 2C9 gene and its clinical significance. Curr Drug Metab 10(7):781–834

    CAS  PubMed  Google Scholar 

  69. Lam MP, Cheung BM (2011) The pharmacogenetics of the response to warfarin in Chinese. Br J Clin Pharmacol 73(3):340–347

    PubMed Central  Google Scholar 

  70. Takanashi K, Tainaka H, Kobayashi K, Yasumori T, Hosakawa M, Chiba K (2000) CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics 10(2):95–104

    CAS  PubMed  Google Scholar 

  71. Yamazaki H, Inoue K, Chiba K, Ozawa N, Kawai T, Suzuki Y, Goldstein JA, Guengerich FP, Shimada T (1998) Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys- and Leu-variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes. Biochem Pharmacol 56(2):243–251

    CAS  PubMed  Google Scholar 

  72. Rettie AE, Haining RL, Bajpai M, Levy RH (1999) A common genetic basis for idiosyncratic toxicity of warfarin and phenytoin. Epilepsy Res 35(3):253–255

    CAS  PubMed  Google Scholar 

  73. Chang TK, Yu L, Goldstein JA, Waxman DJ (1997) Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics 7(3):211–221

    CAS  PubMed  Google Scholar 

  74. Miners JO, Coulter S, Birkett DJ, Goldstein JA (2000) Torsemide metabolism by CYP2C9 variants and other human CYP2C subfamily enzymes. Pharmacogenetics 10(3):267–270

    CAS  PubMed  Google Scholar 

  75. Crespi CL, Miller VP (1997) The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics 7(3):203–210

    CAS  PubMed  Google Scholar 

  76. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R (2002) Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 72(6):702–710

    CAS  PubMed  Google Scholar 

  77. Aithal GP, Day CP, Kesteven PJ, Daly AK (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353(9154):717–719

    CAS  PubMed  Google Scholar 

  78. Shimamoto J, Ieiri I, Urae A, Kimura M, Irie S, Kubota T, Chiba K, Ishizaki T, Otsubo K, Higuchi S (2000) Lack of differences in diclofenac (a substrate for CYP2C9) pharmacokinetics in healthy volunteers with respect to the single CYP2C9*3 allele. Eur J Clin Pharmacol 56(1):65–68

    CAS  PubMed  Google Scholar 

  79. Morin S, Loriot MA, Poirier JM, Tenneze L, Beaune PH, Funck-Brentano C, Jaillon P, Becquemont L (2001) Is diclofenac a valuable CYP2C9 probe in humans? Eur J Clin Pharmacol 56(11):793–797

    CAS  PubMed  Google Scholar 

  80. Daly AK (2004) Pharmacogenetics of the cytochromes P450. Curr Top Med Chem 4(16):1733–1744

    CAS  PubMed  Google Scholar 

  81. Shen H, He MM, Liu H, Wrighton SA, Wang L, Guo B, Li C (2007) Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos 35(8):1292–1300

    CAS  PubMed  Google Scholar 

  82. Niwa T, Murayama N, Yamazaki H (2011) Comparison of cytochrome P450 2D6 and variants in terms of drug oxidation rates and substrate inhibition. Curr Drug Metab 12(5):412–435

    CAS  PubMed  Google Scholar 

  83. Ramamoorthy Y, Tyndale RF, Sellers EM (2001) Cytochrome P450 2D6.1 and cytochrome P450 2D6.10 differ in catalytic activity for multiple substrates. Pharmacogenetics 11(6):477–487

    CAS  PubMed  Google Scholar 

  84. Sakuyama K, Sasaki T, Ujiie S, Obata K, Mizugaki M, Ishikawa M, Hiratsuka M (2008) Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47–51, 53–55, and 57). Drug Metab Dispos 36(12):2460–2467

    CAS  PubMed  Google Scholar 

  85. Transon C, Lecoeur S, Leemann T, Beaune P, Dayer P (1996) Interindividual variability in catalytic activity and immunoreactivity of three major human liver cytochrome P450 isozymes. Eur J Clin Pharmacol 51(1):79–85

    CAS  PubMed  Google Scholar 

  86. Court MH (2010) Interindividual variability in hepatic drug glucuronidation: studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system. Drug Metab Rev 42(1):209–224

    CAS  PubMed  Google Scholar 

  87. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, Lindhout D, Tytgat GN, Jansen PL, Oude Elferink RP et al (1995) The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N Engl J Med 333(18):1171–1175

    CAS  PubMed  Google Scholar 

  88. Strassburg CP (2008) Pharmacogenetics of Gilbert's syndrome. Pharmacogenomics 9(6):703–715

    CAS  PubMed  Google Scholar 

  89. Iyer L, Hall D, Das S, Mortell MA, Ramirez J, Kim S, Di Rienzo A, Ratain MJ (1999) Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin Pharmacol Ther 65(5):576–582

    CAS  PubMed  Google Scholar 

  90. Zhang D, Cui D, Gambardella J, Ma L, Barros A, Wang L, Fu Y, Rahematpura S, Nielsen J, Donegan M, Zhang H, Humphreys WG (2007) Characterization of the UDP glucuronosyltransferase activity of human liver microsomes genotyped for the UGT1A1*28 polymorphism. Drug Metab Dispos 35(12):2270–2280

    CAS  PubMed  Google Scholar 

  91. Iyer L, Das S, Janisch L, Wen M, Ramirez J, Karrison T, Fleming GF, Vokes EE, Schilsky RL, Ratain MJ (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2(1):43–47

    CAS  PubMed  Google Scholar 

  92. Sai K, Saeki M, Saito Y, Ozawa S, Katori N, Jinno H, Hasegawa R, Kaniwa N, Sawada J, Komamura K, Ueno K, Kamakura S, Kitakaze M, Kitamura Y, Kamatani N, Minami H, Ohtsu A, Shirao K, Yoshida T, Saijo N (2004) UGT1A1 haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese patients with cancer. Clin Pharmacol Ther 75(6):501–515

    CAS  PubMed  Google Scholar 

  93. Boyd MA, Srasuebkul P, Ruxrungtham K, Mackenzie PI, Uchaipichat V, Stek M Jr, Lange JM, Phanuphak P, Cooper DA, Udomuksorn W, Miners JO (2006) Relationship between hyperbilirubinaemia and UDP-glucuronosyltransferase 1A1 (UGT1A1) polymorphism in adult HIV-infected Thai patients treated with indinavir. Pharmacogenet Genomics 16(5):321–329

    CAS  PubMed  Google Scholar 

  94. Yamamoto K, Sato H, Fujiyama Y, Doida Y, Bamba T (1998) Contribution of two missense mutations (G71R and Y486D) of the bilirubin UDP glycosyltransferase (UGT1A1) gene to phenotypes of Gilbert's syndrome and Crigler-Najjar syndrome type II. Biochim Biophys Acta 1406(3):267–273

    CAS  PubMed  Google Scholar 

  95. Kwara A, Lartey M, Boamah I, Rezk NL, Oliver-Commey J, Kenu E, Kashuba AD, Court MH (2009) Interindividual variability in pharmacokinetics of generic nucleoside reverse transcriptase inhibitors in TB/HIV-coinfected Ghanaian patients: UGT2B7*1c is associated with faster zidovudine clearance and glucuronidation. J Clin Pharmacol 49(9):1079–1090

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Wilson W 3rd, Pardo-Manuel de Villena F, Lyn-Cook BD, Chatterjee PK, Bell TA, Detwiler DA, Gilmore RC, Valladeras IC, Wright CC, Threadgill DW, Grant DJ (2004) Characterization of a common deletion polymorphism of the UGT2B17 gene linked to UGT2B15. Genomics 84(4):707–714

    CAS  PubMed  Google Scholar 

  97. Jakobsson J, Ekstrom L, Inotsume N, Garle M, Lorentzon M, Ohlsson C, Roh HK, Carlstrom K, Rane A (2006) Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDP-glucuronosyl transferase 2B17 polymorphism. J Clin Endocrinol Metab 91(2):687–693

    CAS  PubMed  Google Scholar 

  98. Terakura S, Murata M, Nishida T, Emi N, Akatsuka Y, Riddell SR, Morishima Y, Kodera Y, Naoe T (2005) A UGT2B17-positive donor is a risk factor for higher transplant-related mortality and lower survival after bone marrow transplantation. Br J Haematol 129(2):221–228

    CAS  PubMed  Google Scholar 

  99. Schulze JJ, Lundmark J, Garle M, Skilving I, Ekstrom L, Rane A (2008) Doping test results dependent on genotype of uridine diphospho-glucuronosyl transferase 2B17, the major enzyme for testosterone glucuronidation. J Clin Endocrinol Metab 93(7):2500–2506

    CAS  PubMed  Google Scholar 

  100. Ohno S, Nakajin S (2009) Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos 37(1):32–40

    CAS  PubMed  Google Scholar 

  101. Wang YH, Trucksis M, McElwee JJ, Wong PH, Maciolek C, Thompson CD, Prueksaritanont T, Garrett GC, Declercq R, Vets E, Willson KJ, Smith RC, Klappenbach JA, Opiteck GJ, Tsou JA, Gibson C, Laethem T, Panorchan P, Iwamoto M, Shaw PM, Wagner JA, Harrelson JC (2012) UGT2B17 genetic polymorphisms dramatically affect the pharmacokinetics of MK-7246 in healthy subjects in a first-in-human study. Clin Pharmacol Ther 92(1):96–102

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, YH., Gibson, C.R. (2014). Variability in Human In Vitro Enzyme Kinetics. In: Nagar, S., Argikar, U., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 1113. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-758-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-758-7_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-757-0

  • Online ISBN: 978-1-62703-758-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics