Skip to main content

Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs)

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1113))

Abstract

Glucuronidation, catalyzed by uridine diphosphate glucuronosyltransferases (UGTs), is an important process for the metabolism and clearance of many lipophilic chemicals, including drugs, environmental chemicals, and endogenous compounds. Glucuronidation is a bi-substrate reaction that requires the aglycone and a cofactor, UDPGA. Accumulating evidence suggests that the bi-substrate reaction follows a compulsory-order ternary mechanism. To simplify the kinetic modelling of glucuronidation reactions in vitro, UDPGA is usually added to incubations in large excess. Many factors have been shown to influence UGT activity and kinetics in vitro, and these must be accounted for in experimental design and data interpretation. Assessing drug–drug interactions (DDIs) involving UGT inhibition remains challenging. However, the increasing availability of UGT enzyme-specific substrate and inhibitor “probes” provides the prospect for more reliable reaction phenotyping and assessment of DDI potential. Although extrapolation of the in vitro intrinsic clearance of a glucuronidated drug often under-predicts in vivo clearance, careful selection of in vitro experimental conditions and inclusion of extrahepatic glucuronidation may improve the predictivity of in vitro–in vivo extrapolation (IVIVE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miners JO, Mackenzie PI (1991) Drug glucuronidation in humans. Pharmacol Ther 51(3):347–369, 0163-7258(91)90065-T [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Luukkanen L, Taskinen J, Kurkela M, Kostiainen R, Hirvonen J, Finel M (2005) Kinetic characterization of the 1A subfamily of recombinant human UDP-glucuronosyltransferases. Drug Metab Dispos 33(7):1017–1026. doi:10.1124/dmd.105.004093, dmd.105.004093 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15(10):677–685, 01213011-200510000-00001 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Miners JO, Mackenzie PI, Knights KM (2010) The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and in vitro-in vivo extrapolation of drug clearance and drug-drug interaction potential. Drug Metab Rev 42(1):196–208. doi:10.3109/03602530903210716

    Article  CAS  PubMed  Google Scholar 

  5. Remmel RP, Zhou J, Argikar UA (2008) UDP-glucuronosyltransferases. In: Drugs and the pharmaceutical sciences, vol 186, 2nd edn, Handbook of drug metabolism. Informa healthcare, New York, NY, pp 137–177

    Google Scholar 

  6. Miners JO, Smith PA, Sorich MJ, McKinnon RA, Mackenzie PI (2004) Predicting human drug glucuronidation parameters: application of in vitro and in silico modeling approaches. Annu Rev Pharmacol Toxicol 44:1–25. doi:10.1146/annurev.pharmtox.44.101802.121546

    Article  CAS  PubMed  Google Scholar 

  7. Kerdpin O, Mackenzie PI, Bowalgaha K, Finel M, Miners JO (2009) Influence of N-terminal domain histidine and proline residues on the substrate selectivities of human UDP-glucuronosyltransferase 1A1, 1A6, 1A9, 2B7, and 2B10. Drug Metab Dispos 37(9):1948–1955. doi:10.1124/dmd.109.028225, dmd.109.028225 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Kubota T, Lewis BC, Elliot DJ, Mackenzie PI, Miners JO (2007) Critical roles of residues 36 and 40 in the phenol and tertiary amine aglycone substrate selectivities of UDP-glucuronosyltransferases 1A3 and 1A4. Mol Pharmacol 72(4):1054–1062. doi:10.1124/mol.107.037952, mol.107.037952 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Finel M, Kurkela M (2008) The UDP-glucuronosyltransferases as oligomeric enzymes. Curr Drug Metab 9(1):70–76

    Article  CAS  PubMed  Google Scholar 

  10. Uchaipichat V, Galetin A, Houston JB, Mackenzie PI, Williams JA, Miners JO (2008) Kinetic modeling of the interactions between 4-methylumbelliferone, 1-naphthol, and zidovudine glucuronidation by udp-glucuronosyltransferase 2B7 (UGT2B7) provides evidence for multiple substrate binding and effector sites. Mol Pharmacol 74(4):1152–1162. doi:10.1124/mol.108.048645, mol.108.048645 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Miners JO, Knights KM, Houston JB, Mackenzie PI (2006) In vitro-in vivo correlation for drugs and other compounds eliminated by glucuronidation in humans: pitfalls and promises. Biochem Pharmacol 71(11):1531–1539. doi:10.1016/j.bcp.2005.12.019, S0006-2952(05)00848-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Walsky RL, Bauman JN, Bourcier K, Giddens G, Lapham K, Negahban A, Ryder TF, Obach RS, Hyland R, Goosen TC (2012) Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab Dispos 40(5):1051–1065. doi:10.1124/dmd.111.043117, dmd.111.043117 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Boase S, Miners JO (2002) In vitro-in vivo correlations for drugs eliminated by glucuronidation: investigations with the model substrate zidovudine. Br J Clin Pharmacol 54(5):493–503, 1669 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Engtrakul JJ, Foti RS, Strelevitz TJ, Fisher MB (2005) Altered AZT (3′-azido-3′-deoxythymidine) glucuronidation kinetics in liver microsomes as an explanation for underprediction of in vivo clearance: comparison to hepatocytes and effect of incubation environment. Drug Metab Dispos 33(11):1621–1627. doi:10.1124/dmd.105.005058, dmd.105.005058 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Gunduz M, Argikar UA, Baeschlin D, Ferreira S, Hosagrahara V, Harriman S (2010) Identification of a novel N-carbamoyl glucuronide: in vitro, in vivo, and mechanistic studies. Drug Metab Dispos 38(3):361–367. doi:10.1124/dmd.109.030650, dmd.109.030650 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Chang JH, Yoo P, Lee T, Klopf W, Takao D (2009) The role of pH in the glucuronidation of raloxifene, mycophenolic acid and ezetimibe. Mol Pharm 6(4):1216–1227. doi:10.1021/mp900065b

    Article  CAS  PubMed  Google Scholar 

  17. Miners JO, Valente L, Lillywhite KJ, Mackenzie PI, Burchell B, Baguley BC, Kestell P (1997) Preclinical prediction of factors influencing the elimination of 5,6-dimethylxanthenone-4-acetic acid, a new anticancer drug. Cancer Res 57(2):284–289

    CAS  PubMed  Google Scholar 

  18. Fisher MB, Paine MF, Strelevitz TJ, Wrighton SA (2001) The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism. Drug Metab Rev 33(3–4):273–297. doi:10.1081/DMR-120000653

    Article  CAS  PubMed  Google Scholar 

  19. Radominska-Pandya A, Czernik PJ, Little JM, Battaglia E, Mackenzie PI (1999) Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev 31(4):817–899. doi:10.1081/DMR-100101944

    Article  CAS  PubMed  Google Scholar 

  20. Soars MG, Ring BJ, Wrighton SA (2003) The effect of incubation conditions on the enzyme kinetics of udp-glucuronosyltransferases. Drug Metab Dispos 31(6):762–767, 31/6/762 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Fisher MB, Campanale K, Ackermann BL, VandenBranden M, Wrighton SA (2000) In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab Dispos 28(5):560–566

    CAS  PubMed  Google Scholar 

  22. Brunelle FM, Verbeeck RK (1997) Conjugation-deconjugation cycling of diflunisal via beta-glucuronidase catalyzed hydrolysis of its acyl glucuronide in the rat. Life Sci 60(22):2013–2021, S0024320597001665 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Brunelle FM, Verbeeck RK (1996) Glucuronidation of diflunisal in liver and kidney microsomes of rat and man. Xenobiotica 26(2):123–131

    Article  CAS  PubMed  Google Scholar 

  24. Gigon PL, Bickel MH (1979) Interference of UDP-glucuronyltransferase and beta-glucuronidase activity in rat liver microsomes at pH 7.5 with p-nitrophenol and p-nitrophenyl glucuronide as substrates. Enzyme 24(4):230–238

    CAS  PubMed  Google Scholar 

  25. Alkharfy KM, Frye RF (2001) High-performance liquid chromatographic assay for acetaminophen glucuronide in human liver microsomes. J Chromatogr B Biomed Sci Appl 753(2):303–308

    Article  CAS  PubMed  Google Scholar 

  26. Oleson L, Court MH (2008) Effect of the beta-glucuronidase inhibitor saccharolactone on glucuronidation by human tissue microsomes and recombinant UDP-glucuronosyltransferases. J Pharm Pharmacol 60(9):1175–1182. doi:10.1211/jpp.60.9.0009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Uchaipichat V, Mackenzie PI, Guo XH, Gardner-Stephen D, Galetin A, Houston JB, Miners JO (2004) Human udp-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos 32(4):413–423. doi:10.1124/dmd.32.4.413, 32/4/413 [pii]

    Article  CAS  PubMed  Google Scholar 

  28. Chauret N, Gauthier A, Nicoll-Griffith DA (1998) Effect of common organic solvents on in vitro cytochrome P450-mediated metabolic activities in human liver microsomes. Drug Metab Dispos 26(1):1–4

    CAS  PubMed  Google Scholar 

  29. Cappiello M, Giuliani L, Pacifici GM (1991) Distribution of UDP-glucuronosyltransferase and its endogenous substrate uridine 5′-diphosphoglucuronic acid in human tissues. Eur J Clin Pharmacol 41(4):345–350

    Article  CAS  PubMed  Google Scholar 

  30. Senafi SB, Clarke DJ, Burchell B (1994) Investigation of the substrate specificity of a cloned expressed human bilirubin UDP-glucuronosyltransferase: UDP-sugar specificity and involvement in steroid and xenobiotic glucuronidation. Biochem J 303(Pt 1):233–240

    CAS  PubMed  Google Scholar 

  31. Court MH, Duan SX, von Moltke LL, Greenblatt DJ, Patten CJ, Miners JO, Mackenzie PI (2001) Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J Pharmacol Exp Ther 299(3):998–1006

    CAS  PubMed  Google Scholar 

  32. Ouzzine M, Antonio L, Burchell B, Netter P, Fournel-Gigleux S, Magdalou J (2000) Importance of histidine residues for the function of the human liver UDP-glucuronosyltransferase UGT1A6: evidence for the catalytic role of histidine 370. Mol Pharmacol 58(6):1609–1615

    CAS  PubMed  Google Scholar 

  33. Yamamura N, Imura-Miyoshi K, Naganuma H (2000) Panipenum, a carbapenem antibiotic, increases the level of hepatic UDP-glucuronic acid in rats. Drug Metab Dispos 28(12):1484–1486

    CAS  PubMed  Google Scholar 

  34. Zakim D, Goldenberg J, Vessey DA (1973) Effects of metals on the properties of hepatic microsomal uridine diphosphate glucuronyltransferase. Biochemistry 12(21):4068–4074

    Article  CAS  PubMed  Google Scholar 

  35. Uchaipichat V, Winner LK, Mackenzie PI, Elliot DJ, Williams JA, Miners JO (2006) Quantitative prediction of in vivo inhibitory interactions involving glucuronidated drugs from in vitro data: the effect of fluconazole on zidovudine glucuronidation. Br J Clin Pharmacol 61(4):427–439. doi:10.1111/j.1365-2125.2006.02588.x, BCP2588 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rowland A, Gaganis P, Elliot DJ, Mackenzie PI, Knights KM, Miners JO (2007) Binding of inhibitory fatty acids is responsible for the enhancement of UDP-glucuronosyltransferase 2B7 activity by albumin: implications for in vitro-in vivo extrapolation. J Pharmacol Exp Ther 321(1):137–147. doi:10.1124/jpet.106.118216, jpet.106.118216 [pii]

    Article  CAS  PubMed  Google Scholar 

  37. Rowland A, Knights KM, Mackenzie PI, Miners JO (2008) The “albumin effect” and drug glucuronidation: bovine serum albumin and fatty acid-free human serum albumin enhance the glucuronidation of UDP-glucuronosyltransferase (UGT) 1A9 substrates but not UGT1A1 and UGT1A6 activities. Drug Metab Dispos 36(6):1056–1062. doi:10.1124/dmd.107.019885, dmd.107.019885 [pii]

    Article  CAS  PubMed  Google Scholar 

  38. Gill KL, Houston JB, Galetin A (2012) Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin. Drug Metab Dispos 40(4):825–835. doi:10.1124/dmd.111.043984, dmd.111.043984 [pii]

    Article  CAS  PubMed  Google Scholar 

  39. Kilford PJ, Stringer R, Sohal B, Houston JB, Galetin A (2009) Prediction of drug clearance by glucuronidation from in vitro data: use of combined cytochrome P450 and UDP-glucuronosyltransferase cofactors in alamethicin-activated human liver microsomes. Drug Metab Dispos 37(1):82–89. doi:10.1124/dmd.108.023853, dmd.108.023853 [pii]

    Article  CAS  PubMed  Google Scholar 

  40. Manevski N, Moreolo PS, Yli-Kauhaluoma J, Finel M (2011) Bovine serum albumin decreases Km values of human UDP-glucuronosyltransferases 1A9 and 2B7 and increases Vmax values of UGT1A9. Drug Metab Dispos 39(11):2117–2129. doi:10.1124/dmd.111.041418, dmd.111.041418 [pii]

    Article  CAS  PubMed  Google Scholar 

  41. Tsoutsikos P, Miners JO, Stapleton A, Thomas A, Sallustio BC, Knights KM (2004) Evidence that unsaturated fatty acids are potent inhibitors of renal UDP-glucuronosyltransferases (UGT): kinetic studies using human kidney cortical microsomes and recombinant UGT1A9 and UGT2B7. Biochem Pharmacol 67(1):191–199, S0006295203006695 [pii]

    Article  CAS  PubMed  Google Scholar 

  42. Rowland A, Knights KM, Mackenzie PI, Miners JO (2009) Characterization of the binding of drugs to human intestinal fatty acid binding protein (IFABP): potential role of IFABP as an alternative to albumin for in vitro-in vivo extrapolation of drug kinetic parameters. Drug Metab Dispos 37(7):1395–1403. doi:10.1124/dmd.109.027656, dmd.109.027656 [pii]

    Article  CAS  PubMed  Google Scholar 

  43. Potrepka RF, Spratt JL (1972) A study on the enzymatic mechanism of guinea-pig hepatic-microsomal bilirubin glucuronyl transferase. Eur J Biochem 29(3):433–439

    Article  CAS  PubMed  Google Scholar 

  44. Vessey DA, Zakim D (1972) Regulation of microsomal enzymes by phospholipids. V. Kinetic studies of hepatic uridine diphosphate-glucuronyltransferase. J Biol Chem 247(10):3023–3028

    CAS  PubMed  Google Scholar 

  45. Sanchez E, Tephly TR (1975) Morphine metabolism. IV. Studies on the mechanism of morphine: uridine diphosphoglucuronyltransferase and its activation by bilirubin. Mol Pharmacol 11(5):613–620

    CAS  PubMed  Google Scholar 

  46. Rao ML, Rao GS, Breuer H (1976) Investigations on the kinetic properties of estrone glucuronyltransferase from pig kidney. Biochim Biophys Acta 452(1):89–100

    Article  CAS  PubMed  Google Scholar 

  47. Koster AS, Noordhoek J (1983) Kinetic properties of the rat intestinal microsomal 1-naphthol:UDP-glucuronosyl transferase. Inhibition by UDP and UDP-N-acetylglucosamine. Biochim Biophys Acta 761(1):76–85, 0304-4165(83)90364-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  48. Falany CN, Green MD, Tephly TR (1987) The enzymatic mechanism of glucuronidation catalyzed by two purified rat liver steroid UDP-glucuronosyltransferases. J Biol Chem 262(3):1218–1222

    CAS  PubMed  Google Scholar 

  49. Matern H, Lappas N, Matern S (1991) Isolation and characterization of hyodeoxycholic-acid: UDP-glucuronosyltransferase from human liver. Eur J Biochem 200(2):393–400

    Article  CAS  PubMed  Google Scholar 

  50. Yin H, Bennett G, Jones JP (1994) Mechanistic studies of uridine diphosphate glucuronosyltransferase. Chem Biol Interact 90(1):47–58, 0009-2797(94)90110-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  51. Fujiwara R, Nakajima M, Yamanaka H, Katoh M, Yokoi T (2008) Product inhibition of UDP-glucuronosyltransferase (UGT) enzymes by UDP obfuscates the inhibitory effects of UGT substrates. Drug Metab Dispos 36(2):361–367. doi:10.1124/dmd.107.018705, dmd.107.018705 [pii]

    Article  CAS  PubMed  Google Scholar 

  52. Zhou J, Tracy TS, Remmel RP (2011) Correlation between bilirubin glucuronidation and estradiol-3-gluronidation in the presence of model UDP-glucuronosyltransferase 1A1 substrates/inhibitors. Drug Metab Dispos 39(2):322–329. doi:10.1124/dmd.110.035030, dmd.110.035030 [pii]

    Article  CAS  PubMed  Google Scholar 

  53. Zhou J, Tracy TS, Remmel RP (2010) Glucuronidation of dihydrotestosterone and trans-androsterone by recombinant UDP-glucuronosyltransferase (UGT) 1A4: evidence for multiple UGT1A4 aglycone binding sites. Drug Metab Dispos 38(3):431–440. doi:10.1124/dmd.109.028712, dmd.109.028712 [pii]

    Article  CAS  PubMed  Google Scholar 

  54. Stone AN, Mackenzie PI, Galetin A, Houston JB, Miners JO (2003) Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human udp-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab Dispos 31(9):1086–1089. doi:10.1124/dmd.31.9.1086, 31/9/1086 [pii]

    Article  CAS  PubMed  Google Scholar 

  55. Ohno S, Kawana K, Nakajin S (2008) Contribution of UDP-glucuronosyltransferase 1A1 and 1A8 to morphine-6-glucuronidation and its kinetic properties. Drug Metab Dispos 36(4):688–694. doi:10.1124/dmd.107.019281, dmd.107.019281 [pii]

    Article  CAS  PubMed  Google Scholar 

  56. Iwuchukwu OF, Nagar S (2008) Resveratrol (trans-resveratrol, 3,5,4′-trihydroxy-trans-stilbene) glucuronidation exhibits atypical enzyme kinetics in various protein sources. Drug Metab Dispos 36(2):322–330. doi:10.1124/dmd.107.018788, dmd.107.018788 [pii]

    Article  CAS  PubMed  Google Scholar 

  57. Green MD, Tephly TR (1996) Glucuronidation of amines and hydroxylated xenobiotics and endobiotics catalyzed by expressed human UGT1.4 protein. Drug Metab Dispos 24(3):356–363

    CAS  PubMed  Google Scholar 

  58. Williams JA, Ring BJ, Cantrell VE, Campanale K, Jones DR, Hall SD, Wrighton SA (2002) Differential modulation of UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed estradiol-3-glucuronidation by the addition of UGT1A1 substrates and other compounds to human liver microsomes. Drug Metab Dispos 30(11):1266–1273

    Article  CAS  PubMed  Google Scholar 

  59. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32(11):1201–1208. doi:10.1124/dmd.104.000794, dmd.104.000794 [pii]

    Article  CAS  PubMed  Google Scholar 

  60. Kiang TK, Ensom MH, Chang TK (2005) UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther 106(1):97–132. doi:10.1016/j.pharmthera.2004.10.013, S0163-7258(04)00200-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  61. Remmel RP, Zhou J, Argikar UA (2008) UDP-glucuronosyltransferases. In: Drug-drug interactions, 2nd edn. Informa Healthcare USA Inc, New York, NY, pp 87–134

    Google Scholar 

  62. FDA (2012) Drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations (draft guidance)

    Google Scholar 

  63. Agency EM (2012) Guideline on investigation of drug interactions

    Google Scholar 

  64. Chiu SH, Huskey SW (1998) Species differences in N-glucuronidation. Drug Metab Dispos 26(9):838–847

    CAS  PubMed  Google Scholar 

  65. Walton K, Dorne JL, Renwick AG (2001) Uncertainty factors for chemical risk assessment: interspecies differences in glucuronidation. Food Chem Toxicol 39(12):1175–1190, S0278-6915(01)00088-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  66. Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, Smith PC (2012) Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography-tandem mass spectrometry. Anal Chem 84(1):98–105. doi:10.1021/ac201704a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Fallon JK, Harbourt DE, Maleki SH, Kessler FK, Ritter JK, Smith PC (2008) Absolute quantification of human uridine-diphosphate glucuronosyl transferase (UGT) enzyme isoforms 1A1 and 1A6 by tandem LC-MS. Drug Metab Lett 2(3):210–222

    Article  CAS  PubMed  Google Scholar 

  68. Sato Y, Nagata M, Kawamura A, Miyashita A, Usui T (2012) Protein quantification of UDP-glucuronosyltransferases 1A1 and 2B7 in human liver microsomes by LC-MS/MS and correlation with glucuronidation activities. Xenobiotica 42(9):823–829. doi:10.3109/00498254.2012.665950

    Article  CAS  PubMed  Google Scholar 

  69. Rouguieg K, Picard N, Sauvage FL, Gaulier JM, Marquet P (2010) Contribution of the different UDP-glucuronosyltransferase (UGT) isoforms to buprenorphine and norbuprenorphine metabolism and relationship with the main UGT polymorphisms in a bank of human liver microsomes. Drug Metab Dispos 38(1):40–45. doi:10.1124/dmd.109.029546, dmd.109.029546 [pii]

    Article  CAS  PubMed  Google Scholar 

  70. Zhu L, Ge G, Zhang H, Liu H, He G, Liang S, Zhang Y, Fang Z, Dong P, Finel M, Yang L (2012) Characterization of hepatic and intestinal glucuronidation of magnolol: application of the relative activity factor approach to decipher the contributions of multiple UDP-glucuronosyltransferase isoforms. Drug Metab Dispos 40(3):529–538. doi:10.1124/dmd.111.042192, dmd.111.042192 [pii]

    Article  CAS  PubMed  Google Scholar 

  71. Ishii Y, Takeda S, Yamada H (2010) Modulation of UDP-glucuronosyltransferase activity by protein-protein association. Drug Metab Rev 42(1):145–158. doi:10.3109/03602530903208579

    Article  CAS  PubMed  Google Scholar 

  72. Meech R, Mackenzie PI (1997) UDP-glucuronosyltransferase, the role of the amino terminus in dimerization. J Biol Chem 272(43):26913–26917

    Article  CAS  PubMed  Google Scholar 

  73. Ghosh SS, Sappal BS, Kalpana GV, Lee SW, Chowdhury JR, Chowdhury NR (2001) Homodimerization of human bilirubin-uridine-diphosphoglucuronate glucuronosyltransferase-1 (UGT1A1) and its functional implications. J Biol Chem 276(45):42108–42115. doi:10.1074/jbc.M106742200, M106742200 [pii]

    Article  CAS  PubMed  Google Scholar 

  74. Girard H, Levesque E, Bellemare J, Journault K, Caillier B, Guillemette C (2007) Genetic diversity at the UGT1 locus is amplified by a novel 3′ alternative splicing mechanism leading to nine additional UGT1A proteins that act as regulators of glucuronidation activity. Pharmacogenet Genomics 17(12):1077–1089. doi:10.1097/FPC.0b013e3282f1f118, 01213011-200712000-00008 [pii]

    Article  CAS  PubMed  Google Scholar 

  75. Ishii Y, Miyoshi A, Watanabe R, Tsuruda K, Tsuda M, Yamaguchi-Nagamatsu Y, Yoshisue K, Tanaka M, Maji D, Ohgiya S, Oguri K (2001) Simultaneous expression of guinea pig UDP-glucuronosyltransferase 2B21 and 2B22 in COS-7 cells enhances UDP-glucuronosyltransferase 2B21-catalyzed morphine-6-glucuronide formation. Mol Pharmacol 60(5):1040–1048

    CAS  PubMed  Google Scholar 

  76. Fujiwara R, Nakajima M, Oda S, Yamanaka H, Ikushiro S, Sakaki T, Yokoi T (2010) Interactions between human UDP-glucuronosyltransferase (UGT) 2B7 and UGT1A enzymes. J Pharm Sci 99(1):442–454. doi:10.1002/jps.21830

    Article  CAS  PubMed  Google Scholar 

  77. Fujiwara R, Nakajima M, Yamanaka H, Nakamura A, Katoh M, Ikushiro S, Sakaki T, Yokoi T (2007) Effects of coexpression of UGT1A9 on enzymatic activities of human UGT1A isoforms. Drug Metab Dispos 35(5):747–757. doi:10.1124/dmd.106.014191, dmd.106.014191 [pii]

    Article  CAS  PubMed  Google Scholar 

  78. Fujiwara R, Nakajima M, Yamanaka H, Katoh M, Yokoi T (2007) Interactions between human UGT1A1, UGT1A4, and UGT1A6 affect their enzymatic activities. Drug Metab Dispos 35(10):1781–1787. doi:10.1124/dmd.107.016402, dmd.107.016402 [pii]

    Article  CAS  PubMed  Google Scholar 

  79. Kurkela M, Patana AS, Mackenzie PI, Court MH, Tate CG, Hirvonen J, Goldman A, Finel M (2007) Interactions with other human UDP-glucuronosyltransferases attenuate the consequences of the Y485D mutation on the activity and substrate affinity of UGT1A6. Pharmacogenet Genomics 17(2):115–126. doi:10.1097/FPC.0b013e328011b598, 01213011-200702000-00003 [pii]

    Article  CAS  PubMed  Google Scholar 

  80. Takeda S, Ishii Y, Iwanaga M, Mackenzie PI, Nagata K, Yamazoe Y, Oguri K, Yamada H (2005) Modulation of UDP-glucuronosyltransferase function by cytochrome P450: evidence for the alteration of UGT2B7-catalyzed glucuronidation of morphine by CYP3A4. Mol Pharmacol 67(3):665–672. doi:10.1124/mol.104.007641, mol.104.007641 [pii]

    Article  CAS  PubMed  Google Scholar 

  81. Takeda S, Ishii Y, Mackenzie PI, Nagata K, Yamazoe Y, Oguri K, Yamada H (2005) Modulation of UDP-glucuronosyltransferase 2B7 function by cytochrome P450s in vitro: differential effects of CYP1A2, CYP2C9 and CYP3A4. Biol Pharm Bull 28(10):2026–2027, JST.JSTAGE/bpb/28.2026 [pii]

    Article  CAS  PubMed  Google Scholar 

  82. Taura K, Naito E, Ishii Y, Mori MA, Oguri K, Yamada H (2004) Cytochrome P450 1A1 (CYP1A1) inhibitor alpha-naphthoflavone interferes with UDP-glucuronosyltransferase (UGT) activity in intact but not in permeabilized hepatic microsomes from 3-methylcholanthrene-treated rats: possible involvement of UGT-P450 interactions. Biol Pharm Bull 27(1):56–60

    Article  CAS  PubMed  Google Scholar 

  83. Castuma CE, Brenner RR (1983) Effect of fatty acid deficiency on microsomal membrane fluidity and cooperativity of the UDP-glucuronyltransferase. Biochim Biophys Acta 729(1):9–16, 0005-2736(83)90449-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  84. Parkinson A, Kazmi F, Buckley DB, Yerino P, Ogilvie BW, Paris BL (2010) System-dependent outcomes during the evaluation of drug candidates as inhibitors of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) enzymes: human hepatocytes versus liver microsomes versus recombinant enzymes. Drug Metab Pharmacokinet 25(1):16–27, JST.JSTAGE/dmpk/25.16 [pii]

    Article  CAS  PubMed  Google Scholar 

  85. Miners JO, Bowalgaha K, Elliot DJ, Baranczewski P, Knights KM (2011) Characterization of niflumic acid as a selective inhibitor of human liver microsomal UDP-glucuronosyltransferase 1A9: application to the reaction phenotyping of acetaminophen glucuronidation. Drug Metab Dispos 39(4):644–652. doi:10.1124/dmd.110.037036, dmd.110.037036 [pii]

    Article  CAS  PubMed  Google Scholar 

  86. Rowland A, Elliot DJ, Williams JA, Mackenzie PI, Dickinson RG, Miners JO (2006) In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction. Drug Metab Dispos 34(6):1055–1062. doi:10.1124/dmd.106.009340, dmd.106.009340 [pii]

    CAS  PubMed  Google Scholar 

  87. Rowland AS, Umbach DM, Bohlig EM, Stallone L, Sandler DP (2007) Modifying the response labels of an ADHD teacher rating scale: psychometric and epidemiologic implications. J Atten Disord 11(3):384–397. doi:10.1177/1087054707305082, 11/3/384 [pii]

    Article  PubMed  Google Scholar 

  88. Raungrut P, Uchaipichat V, Elliot DJ, Janchawee B, Somogyi AA, Miners JO (2010) In vitro-in vivo extrapolation predicts drug-drug interactions arising from inhibition of codeine glucuronidation by dextropropoxyphene, fluconazole, ketoconazole, and methadone in humans. J Pharmacol Exp Ther 334(2):609–618. doi:10.1124/jpet.110.167916, jpet.110.167916 [pii]

    Article  CAS  PubMed  Google Scholar 

  89. Wattanachai N, Tassaneeyakul W, Rowland A, Elliot DJ, Bowalgaha K, Knights KM, Miners JO (2012) Effect of albumin on human liver microsomal and recombinant CYP1A2 activities: impact on in vitro-in vivo extrapolation of drug clearance. Drug Metab Dispos 40(5):982–989. doi:10.1124/dmd.111.044057, dmd.111.044057 [pii]

    Article  CAS  PubMed  Google Scholar 

  90. Uchaipichat V, Mackenzie PI, Elliot DJ, Miners JO (2006) Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) “probes” for human udp-glucuronosyltransferases. Drug Metab Dispos 34(3):449–456. doi:10.1124/dmd.105.007369, dmd.105.007369 [pii]

    CAS  PubMed  Google Scholar 

  91. Zhou J, Tracy TS, Remmel RP (2010) Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1. Drug Metab Dispos 38(11):1907–1911. doi:10.1124/dmd.110.033829, dmd.110.033829 [pii]

    Article  CAS  PubMed  Google Scholar 

  92. Itaaho K, Mackenzie PI, Ikushiro S, Miners JO, Finel M (2008) The configuration of the 17-hydroxy group variably influences the glucuronidation of beta-estradiol and epiestradiol by human UDP-glucuronosyltransferases. Drug Metab Dispos 36(11):2307–2315. doi:10.1124/dmd.108.022731, dmd.108.022731 [pii]

    Article  CAS  PubMed  Google Scholar 

  93. Trottier J, Verreault M, Grepper S, Monte D, Belanger J, Kaeding J, Caron P, Inaba TT, Barbier O (2006) Human UDP-glucuronosyltransferase (UGT)1A3 enzyme conjugates chenodeoxycholic acid in the liver. Hepatology 44(5):1158–1170. doi:10.1002/hep.21362

    Article  CAS  PubMed  Google Scholar 

  94. Court MH (2005) Isoform-selective probe substrates for in vitro studies of human UDP-glucuronosyltransferases. Methods Enzymol 400:104–116. doi:10.1016/S0076-6879(05)00007-8, S0076-6879(05)00007-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  95. Krishnaswamy S, Duan SX, Von Moltke LL, Greenblatt DJ, Court MH (2003) Validation of serotonin (5-hydroxtryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab Dispos 31(1):133–139

    Article  CAS  PubMed  Google Scholar 

  96. Court MH, Duan SX, Guillemette C, Journault K, Krishnaswamy S, Von Moltke LL, Greenblatt DJ (2002) Stereoselective conjugation of oxazepam by human UDP-glucuronosyltransferases (UGTs): S-oxazepam is glucuronidated by UGT2B15, while R-oxazepam is glucuronidated by UGT2B7 and UGT1A9. Drug Metab Dispos 30(11):1257–1265

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix: A Representative Protocol on In Vitro Glucuronidation: Determination of Kinetic Parameters for Estradiol-3-Glucuronidation in HLM

The following protocol illustrates the incubation conditions and procedures for determining the kinetic parameters of estradiol-3-glucuronidation in HLM. Based on prior time and protein linearity studies, the kinetic characterization is conducted with 0.25 mg/mL of protein and for an incubation time of 20 min.

Reagents

  • Pooled human liver microsomes (BD Biosciences; Woburn, MA)

  • UltraPure™ 1 M Tris–HCl, pH 7.4, (Invitrogen; Carlsbad, CA)

  • Magnesium chloride (MgCl2) hexahydrate (Sigma; St. Louis, MO)

  • Alamethicin (Sigma; St. Louis, MO)

  • β-Estradiol and estadiol-3-glucuronide (Sigma; St. Louis, MO)

  • 4-Methylumbelliferyl-β-d-glucuronide (4-MUG) hydrate (Sigma; St. Louis, MO) as internal standard

Procedures

  1. 1.

    Prepare the following stock solutions

    • Incubation buffer: 1 mM MgCL2 in Tris–HCl Buffer (0.05 M, pH = 7.4)

    • 5 mg/mL alamethicin in ethanol

    • 50 mM UDPGA in incubation buffer

    • Estradiol stock solution: 8–10 concentrations; the concentrations of the stock solutions are 100-fold higher than the actual concentrations in the incubation.

  2. 2.

    Prepare alamethicin-activated HLM

    Dilute pooled HLM (20 mg/mL) with incubation buffer, and then add alamethicin (5 mg/mL). The final protein concentration and alamethicin content are 0.625 mg/mL and 50 μg/mg of protein, respectively. Incubate the resulting mixture on ice for 15–30 min.

  3. 3.

    Mix all the incubation components, except UDPGA, according to Table 2, and then incubate the resulting mixture and UDPGA stock solution separately in a 37 °C water bath for 3 min.

    Table 2 Incubation components and the volume of each component added to the incubation
  4. 4.

    Add pre-warmed UDPGA stock solution to start the reaction.

  5. 5.

    After incubating the complete incubation mixture at 37 °C for 20 min, stop the reaction by adding equal volume of acetonitrile, containing the internal standard, 0.5 μM 4-methylumbelliferone glucuronide.

  6. 6.

    Centrifuge the resulting mixture at 13,000 × g for 5 min. The concentrations of estradiol-3-glucuronide in the supernatants are determined by LC-MS/MS analyses, based on standard curves prepared with an authentic estradiol-3-glucuronide reference standard.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhou, J., Miners, J.O. (2014). Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs). In: Nagar, S., Argikar, U., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 1113. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-758-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-758-7_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-757-0

  • Online ISBN: 978-1-62703-758-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics