Skip to main content

The Blood-Based Glycophorin A (GPA) Human In Vivo Somatic Mutation Assay

  • Protocol
  • First Online:
Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1105))

Abstract

The glycophorin A assay concurrently detects and quantifies erythrocytes with allele-loss phenotypes at the autosomal locus responsible for the polymorphic MN blood group. It uses a pair of allele-specific monoclonal antibodies and flow cytometry to efficiently analyze a standard population of five million cells. Two distinct variant phenotypes are detected: simple allele loss and allele loss followed by reduplication of the remaining allele; both are consistent with the mechanisms underlying “loss of heterozygosity” at tumor-suppressor genes. The assay is an intermediate biomarker of biological effect in the somatic mutational model of human cancer and has been applied to populations with a known or suspected genotoxic exposure, to patients with hereditary syndromes causing predisposition to cancer (where the assay has been applied diagnostically), and to patients manifesting cancer as a disease endpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mendelsohn ML, Bigbee WL, Branscomb EW, Stamatoyannopoulos G (1980) The detection and sorting of rare sickle-hemoglobin containing cells in normal human blood. In: Laerum OD, Lindmo T, Thorud E (eds) Flow cytometry IV. Universitetsforlaget, Oslo, pp 311–313

    Google Scholar 

  2. Tates AD, Bernini LF, Natarajan AT et al (1989) Detection of somatic mutants in man: HPRT mutations in lymphocytes and hemoglobin mutations in erythrocytes. Mutat Res 213:73–82

    Article  CAS  PubMed  Google Scholar 

  3. Palacajornsuk P (2006) Review: molecular basis of MNS blood group variants. Immunohematology 22:171–182

    CAS  PubMed  Google Scholar 

  4. Reid ME (2009) MNS blood group system: a review. Immunohematology 25:95–101

    CAS  PubMed  Google Scholar 

  5. Heathcote DJ, Carroll TE, Flower RL (2011) Sixty years of antibodies to MNS system hybrid glycophorins: what have we learned? Transfus Med Rev 25:111–124

    Article  PubMed  Google Scholar 

  6. Langlois RG, Bigbee WL, Jensen RH (1986) Measurements of the frequency of human erythrocytes with gene expression loss phenotypes at the glycophorin A locus. Hum Genet 74:353–362

    Article  CAS  PubMed  Google Scholar 

  7. Langlois RG, Nisbet BA, Bigbee WL, Ridinger DN, Jensen RH (1990) An improved flow cytometric assay for somatic mutations at the glycophorin A locus in humans. Cytometry 11:513–521

    Article  CAS  PubMed  Google Scholar 

  8. Grant SG, Bigbee WL, Langlois RG, Jensen RH (1991) Allele loss at the human GPA locus: a model for recessive oncogenesis with potential clinical application. Clin Biotechnol 3:177–185

    Google Scholar 

  9. Jensen RH, Bigbee WL (1996) Direct immunofluorescence labeling provides an improved method for the glycophorin A somatic mutation assay. Cytometry 23:337–343

    Article  CAS  PubMed  Google Scholar 

  10. Langlois RG, van den Engh G (1993) High speed flow cytometric detection of rare glycophorin A mutations in human blood cells [Abstract]. Cytometry 14(suppl 6):21

    Google Scholar 

  11. Schiwietz J, Lorenz R, Scheubeck M, Börner W, Hempel K (1996) Improved determination of variant erythrocytes at the glycophorin A (GPA) locus and variant frequency in patients treated with radioiodine for thyroid cancer. Int J Radiat Biol 70:131–143

    Article  CAS  PubMed  Google Scholar 

  12. Hempel K, Deubel W, Lorenz R, Reiners C (2003) High gradient magnetic cell sorting and internal standardisation substantially improve the assay for somatic mutation at the glycophorin A (GPA) locus. Mutat Res 525:29–42

    Article  CAS  PubMed  Google Scholar 

  13. Albertini RJ, Castle KL, Borcherding WR (1982) T-cell cloning to detect the mutant 6-thioguanine-resistant lymphocytes present in human peripheral blood. Proc Natl Acad Sci USA 79:6617–6621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Worton RG, Grant SG (1985) Segregation-like events in Chinese hamster cells. In: Gottesman MM (ed) Molecular cell genetics. Wiley, New York, pp 831–867

    Google Scholar 

  15. Henry B, Grant SG, Klopman G, Rosenkranz HS (1998) Induction of forward mutations at the thymidine kinase locus of mouse lymphoma cells: evidence for electrophilic and non-electrophilic mechanisms. Mutat Res 397:313–335

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell AD (1997) Alternate hypothesis for the bimodal size distribution of mutant colonies of L5178Y mouse lymphoma cells. Environ Mol Mutagen 29:431–433

    Article  CAS  PubMed  Google Scholar 

  17. Farrell SA, Worton RG (1977) Chromosome loss is responsible for segregation at the HPRT locus in Chinese hamster cell hybrids. Somatic Cell Genet 3:539–551

    Article  CAS  PubMed  Google Scholar 

  18. Eves EM, Farber RA (1981) Chromosome segregation is frequently associated with the expression of recessive mutations in mouse cells. Proc Natl Acad Sci USA 78:1768–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gallie BL, Worton RG (1986) Somatic events unmask recessive cancer genes to initiate malignancy. J Cell Biochem 32:215–222

    Article  CAS  PubMed  Google Scholar 

  20. Grant SG, Campbell CE, Duff C, Toth SL, Worton RG (1989) Gene inactivation as a mechanism for the expression of recessive phenotypes. Am J Hum Genet 45:619–634

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Frost P, Kerbel RS (1983) On a possible epigenetic mechanism(s) of tumor cell heterogeneity. The role of DNA methylation. Cancer Metastasis Rev 2:375–378

    Article  CAS  PubMed  Google Scholar 

  22. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  CAS  PubMed  Google Scholar 

  23. Langlois RG, Bigbee WL, Kyoizumi SK et al (1987) Evidence for increased somatic cell mutations at the glycophorin A locus in atomic bomb survivors. Science 236:445–448

    Article  CAS  PubMed  Google Scholar 

  24. Wasmuth JJ, Hall LV (1984) Genetic demonstration of mitotic recombination in cultured Chinese hamster cell hybrids. Cell 36:697–707

    Article  CAS  PubMed  Google Scholar 

  25. Rosenstraus MJ, Chasin LA (1978) Separation of linked markers in Chinese hamster cell hybrids: mitotic recombination is not involved. Genetics 90:735–760

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Campbell CE, Worton RG (1981) Segregation of recessive phenotypes in somatic cell hybrids: role of mitotic recombination, gene inactivation, and chromosome nondisjunction. Mol Cell Biol 1:336–346

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Eves EM, Farber RA (1983) Expression of recessive Aprt mutations in mouse CAK cells resulting from chromosome loss and duplication. Somatic Cell Genet 9:771–778

    Article  CAS  PubMed  Google Scholar 

  28. Albertini S, Zimmermann FK (1991) The detection of chemically induced chromosomal malsegregation in Saccharomyces cerevisiae D61.M: a literature survey (1984–1990). Mutat Res 258:237–258

    Article  CAS  PubMed  Google Scholar 

  29. Liu M, Grant SG, Macina OT, Klopman G, Rosenkranz HS (1997) Structural and mechanistic bases for the induction of mitotic chromosomal loss and duplication (‘malsegregation’) in the yeast Saccharomyces cerevisiae: relevance to human carcinogenesis and developmental toxicology. Mutat Res 374:209–231

    Article  CAS  PubMed  Google Scholar 

  30. Moser MJ, Oshima J, Bigbee WL et al (2000) Genetic instability and hematologic disease risk in Werner syndrome patients and heterozygotes. Cancer Res 60:2492–2496

    CAS  PubMed  Google Scholar 

  31. Cavenee WK (1989) Loss of heterozygosity in stages of malignancy. Clin Chem 35(7 Suppl):B48–B52

    CAS  PubMed  Google Scholar 

  32. Grant SG, Bigbee WL (1993) In vivo somatic mutation and segregation at the human glycophorin A (GPA) locus: phenotypic variation encompassing both gene-specific and chromosomal mechanisms. Mutat Res 288:163–172

    Article  CAS  PubMed  Google Scholar 

  33. Rothman N, Haas R, Hayes RB et al (1995) Benzene induces gene-duplicating but not gene-inactivating mutations at the glycophorin A locus in exposed humans. Proc Natl Acad Sci USA 92:4069–4073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Escobar PA, Olivero OA, Wade NA et al (2007) Genotoxicity assessed by the comet and GPA assays following in vitro exposure of human lymphoblastoid cells (H9) or perinatal exposure of mother-child pairs to AZT or AZT-3TC. Environ Mol Mutagen 48:330–343

    Article  CAS  PubMed  Google Scholar 

  35. Langlois RG, Bigbee WL, Jensen RH, German J (1989) Evidence for elevated in vivo mutations and somatic recombination in Bloom’s syndrome. Proc Natl Acad Sci USA 86:670–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Compton-Quintana PJE, Jensen RH, Bigbee WL et al (1993) Use of the glycophorin A human mutation assay to study workers exposed to styrene. Environ Health Perspect 99:297–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Grant SG (1992) Mutation, segregation, and childhood cancer. In: Green DM, D’Angio GJ (eds) Late effects of treatment for childhood cancer. Wiley-Liss, New York, pp 121–132

    Google Scholar 

  38. Grant SG, Jensen RH (1993) Use of hematopoietic cells and markers for the detection and quantitation of human in vivo somatic mutation. In: Garratty G (ed) Immunobiology of transfusion medicine. Marcel Dekker, New York, pp 299–323

    Google Scholar 

  39. Evdokimova VE, McLoughlin RK, Wenger SL, Grant SG (2005) Use of the glycophorin A bone marrow somatic mutation assay for rapid, unambiguous identification of Fanconi anemia homozygotes regardless of GPA genotype. Am J Med Genet A 135:59–65

    Article  PubMed  Google Scholar 

  40. Bigbee WL, Fuscoe JC, Grant SG et al (1998) Human in vivo somatic mutation measured at two loci: individuals with stably elevated background erythrocyte glycophorin A (gpa) variant frequencies exhibit normal T-lymphocyte hprt mutant frequencies. Mutat Res 397:119–136

    Article  CAS  PubMed  Google Scholar 

  41. Grant SG (2012) Translating mutagenesis into carcinogenesis. J Carcinog Mutagen 3:e106

    Article  Google Scholar 

  42. Nukui T, Day RD, Gordish-Dressman HA et al (2006) The absence of interaction between drug metabolizing enzyme genotype and maternal lifestyle factors on glycophorin A somatic mutation frequency levels in newborns. Pharmacogenet Genomics 16:129–138

    Article  CAS  PubMed  Google Scholar 

  43. Grant SG (2010) Tobacco smoke exposure and somatic mutation in newborns. Open Pediatr Med J 4:10–13

    Article  CAS  Google Scholar 

  44. Grant SG (2001) Molecular epidemiology of human cancer: biomarkers of genotoxic exposure and susceptibility. J Environ Pathol Toxicol Oncol 20:245–261

    Article  CAS  PubMed  Google Scholar 

  45. Perera FP, Tang DL, O’Neill JP et al (1993) HPRT and glycophorin A mutations in foundry workers: relationship to PAH exposure and to PAH-DNA adducts. Carcinogenesis 14:969–973

    Article  CAS  PubMed  Google Scholar 

  46. Saenko AS, Zamulaeva IA, Smirnova SG et al (1998) Determination of somatic mutant frequencies at glycophorin A and T-cell receptor loci for biodosimetry of prolonged irradiation. Int J Radiat Biol 73:613–618

    Article  CAS  PubMed  Google Scholar 

  47. Jones IM, Galick H, Kato P et al (2002) Three somatic genetic biomarkers and covariates in radiation-exposed Russian cleanup workers of the Chernobyl nuclear reactor 6–13 years after exposure. Radiat Res 158:424–442

    Article  CAS  PubMed  Google Scholar 

  48. Akiyama M, Kyoizumi S, Kusunoki Y et al (1996) Monitoring exposure to atomic bomb radiation by somatic mutation. Environ Health Perspect 104(suppl 3):493–496

    Google Scholar 

  49. Grant SG, Reeger W, Wenger SL (1998) Diagnosis of ataxia telangiectasia with the glycophorin A somatic mutation assay. Genet Test 1:261–267

    Article  CAS  Google Scholar 

  50. Hsu TC (1983) Genetic instability in the human population: a working hypothesis. Hereditas 98:1–9

    Article  CAS  PubMed  Google Scholar 

  51. Okada S, Ishii H, Nose H et al (1997) Evidence for increased somatic cell mutations in patients with hepatocellular carcinoma. Carcinogenesis 18:445–449

    Article  CAS  PubMed  Google Scholar 

  52. Grant SG, Bigbee WL, Langlois RG, Jensen RH (1991) Methods for the detection of mutational and segregational events: relevance to the monitoring of survivors of childhood cancer. In: Green DM, D’Angio GJ (eds) Late effects of treatment for childhood cancer. Wiley-Liss, New York, pp 133–150

    Google Scholar 

  53. Ravi M, Paul SFD (2002) A rapid biodosimetric technique at the human glycophorin-A locus. Int J Hum Genet 2:251–254

    Google Scholar 

  54. Kyoizumi S, Nakamura N, Hakoda M et al (1989) Detection of somatic mutations at the glycophorin A locus in erythrocytes of atomic bomb survivors using a single beam flow sorter. Cancer Res 49:581–588

    CAS  PubMed  Google Scholar 

  55. Simon AE, Taylor MW (1983) High-frequency mutation at the adenine phosphoribosyltransferase locus in Chinese hamster ovary cells due to deletion of the gene. Proc Natl Acad Sci USA 80:810–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Morley AA, Grist SA, Turner DR, Kutlaca A, Bennett G (1990) Molecular nature of in vivo mutations in human cells at the autosomal HLA-A locus. Cancer Res 50:4584–4587

    CAS  PubMed  Google Scholar 

  57. Grant SG, Zhang YP, Klopman G, Rosenkranz HS (2000) Modeling the mouse lymphoma forward mutational assay: the Gene-Tox program database. Mutat Res 465:201–229

    Article  CAS  PubMed  Google Scholar 

  58. Langlois RG, Manchester DK (1994) Development of methods for characterizing fetal and adult somatic mutations detected in human erythroid precursors [Abstract]. Environ Mol Mutagen 23(Suppl.S1):36

    Google Scholar 

  59. Leos SH, Bigbee WL, Jensen RH, Grant SG (1997) SfaNI polymorphism distinguishes the alleles of the glycophorin A locus that determine the MN blood group. Acta Haematol 98:51–53

    Article  CAS  PubMed  Google Scholar 

  60. DuPont BR, Grant SG, Oto SH et al (1995) Molecular characterization of glycophorin A transcripts in human erythroid cells using RT-PCR, allele-specific restriction, and sequencing. Vox Sang 68:121–129

    Article  CAS  PubMed  Google Scholar 

  61. Mao J, Dong Y, Liu B (2000) Development of a human somatic detection method—GPA assay [Chinese]. Chinese J Radiat Mediation Protect. 2000-03-007

    Google Scholar 

  62. Mao J, Dong Y, Liu B (2000) Preparation and characterization of McAb to human GPAN [Chinese]. Chinese J Biol. 2000-04-003

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Grant’s colleagues at LLNL who originally conceptualized (Elbert W. Branscomb, William L. Bigbee) and developed (Ronald H. Jensen, Richard G. Langlois) the GPA assay as well as the students (Penelope J. Quintana, Barbara Henry, Reagan K. McLoughlin, Heather Gordish) and technicians (Barbara A. Nisbet, Ann E. Gorvad, Lynn Biedler, Manda K. Welsh, Britt M. Luccy, Jennifer Adair, Julie A. Conte, Christine M. Cerceo, and Khushbu Thumar) who have applied and refined it over the years. They would also like to acknowledge the support of the Pittsburgh Foundation, the Teresa and John Heinz III Foundation, the Richard King Mellon Foundation, and Friends for an Earlier Breast Cancer Test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Humana Press

About this protocol

Cite this protocol

Myers, N.T., Grant, S.G. (2014). The Blood-Based Glycophorin A (GPA) Human In Vivo Somatic Mutation Assay. In: Keohavong, P., Grant, S. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology, vol 1105. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-739-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-739-6_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-738-9

  • Online ISBN: 978-1-62703-739-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics