Skip to main content

Quantification of Complement C5b-9 Binding to Cells by Flow Cytometry

  • Protocol
  • First Online:
The Complement System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1100))

Abstract

Interaction of the complement system, directly or indirectly (e.g., via antibodies), with cells activates the early and late complement components and culminates in the deposition of a membrane-spanning C5b-9 complex on the cell surface. At a high copy number, this C5b-9 will activate cell death, whereas at a low copy number, it will transmit various signals into cells. Quantification of C5b-9 deposition is useful for assessments of the capacity of cells and antibodies to activate complement. By using an antibody that identifies a novel antigen of the C5b-9 complex, the amount of C5b-9 complexes on cells can be quantified by flow cytometry. The detailed protocol is described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walport MJ (2001) Complement. Second of two parts. N Engl J Med 344:1140–1144

    Article  PubMed  CAS  Google Scholar 

  2. Muller-Eberhard HJ (1986) The membrane attack complex of complement. Annu Rev Immunol 4:503–528

    Article  PubMed  CAS  Google Scholar 

  3. Mollnes TE, Harboe M (1987) Immunohistochemical detection of the membrane and fluid-phase terminal complement complexes C5b-9(m) and SC5b-9. Consequences for interpretation and terminology. Scand J Immunol 26:381–386

    Article  PubMed  CAS  Google Scholar 

  4. DiScipio RG, Berlin C (1999) The architectural transition of human complement component C9 to poly(C9). Mol Immunol 36:575–585

    Article  PubMed  CAS  Google Scholar 

  5. Podack ER, Tschopp J (1982) Polymerization of the ninth component of complement (C9): formation of poly(C9) with a tubular ultrastructure resembling the membrane attack complex of complement. Proc Natl Acad Sci U S A 79:574–578

    Article  PubMed  CAS  Google Scholar 

  6. Tschopp J, Podack ER, Muller-Eberhard HJ (1985) The membrane attack complex of complement: C5b-8 complex as accelerator of C9 polymerization. J Immunol 134:495–499

    PubMed  CAS  Google Scholar 

  7. Whitlow MB, Ramm LE, Mayer MM (1985) Penetration of C8 and C9 in the C5b-9 complex across the erythrocyte membrane into the cytoplasmic space. J Biol Chem 260:998–1005

    PubMed  CAS  Google Scholar 

  8. Ramm LE, Whitlow MB, Mayer MM (1982) Size of the transmembrane channels produced by complement proteins C5b-8. J Immunol 129:1143–1146

    PubMed  CAS  Google Scholar 

  9. Ramm LE, Whitlow MB, Mayer MM (1982) Transmembrane channel formation by complement: functional analysis of the number of C5b6, C7, C8, and C9 molecules required for a single channel. Proc Natl Acad Sci U S A 79:4751–4755

    Article  PubMed  CAS  Google Scholar 

  10. Preissner KP, Podack ER, Muller-Eberhard HJ (1989) SC5b-7, SC5b-8 and SC5b-9 complexes of complement: ultrastructure and localization of the S-protein (vitronectin) within the macromolecules. Eur J Immunol 19:69–75

    Article  PubMed  CAS  Google Scholar 

  11. Bhakdi S, Tranum-Jensen J, Klump O (1980) The terminal membrane C5b-9 complex of human complement. Evidence for the existence of multiple protease-resistant polypeptides that form the trans-membrane complement channel. J Immunol 124:2451–2457

    PubMed  CAS  Google Scholar 

  12. Kim SH, Carney DF, Hammer CH, Shin ML (1987) Nucleated cell killing by complement: effects of C5b-9 channel size and extracellular Ca2+ on the lytic process. J Immunol 138:1530–1536

    PubMed  CAS  Google Scholar 

  13. Papadimitriou JC, Ramm LE, Drachenberg CB, Trump BF, Shin ML (1991) Quantitative analysis of adenine nucleotides during the prelytic phase of cell death mediated by C5b-9. J Immunol 147:212–217

    PubMed  CAS  Google Scholar 

  14. Morgan BP, Luzio JP, Campbell AK (1986) Intracellular Ca2+ and cell injury: a paradoxical role of Ca2+ in complement membrane attack. Cell Calcium 7:399–411

    Article  PubMed  CAS  Google Scholar 

  15. Cragg MS, Howatt WJ, Bloodworth L, Anderson VA, Morgan BP, Glennie MJ (2000) Complement mediated cell death is associated with DNA fragmentation. Cell Death Differ 7:48–58

    Article  PubMed  CAS  Google Scholar 

  16. Fishelson Z, Attali G, Mevorach D (2001) Complement and apoptosis. Mol Immunol 38:207–219

    Article  PubMed  CAS  Google Scholar 

  17. Nauta, A. J., M. R. Daha, O. Tijsma, B. van de Water, F. Tedesco, and A. Roos (2002) The membrane attack complex of complement induces caspase activation and apoptosis. Eur J Immunol 32:783–792

    Article  Google Scholar 

  18. Gancz D, Donin N, Fishelson Z (2009) Involvement of the c-jun N-terminal kinases JNK1 and JNK2 in complement-mediated cell death. Mol Immunol 47:310–317

    Article  PubMed  CAS  Google Scholar 

  19. Ziporen L, Donin N, Shmushkovich T, Gross A, Fishelson Z (2009) Programmed necrotic cell death induced by complement involves a Bid-dependent pathway. J Immunol 182:515–521

    PubMed  CAS  Google Scholar 

  20. Bohana-Kashtan O, Ziporen L, Donin N, Kraus S, Fishelson Z (2004) Cell signals transduced by complement. Mol Immunol 41:583–597

    Article  PubMed  CAS  Google Scholar 

  21. Gancz D, Fishelson Z (2009) Cancer resistance to complement-dependent cytotoxicity (CDC): problem-oriented research and development. Mol Immunol 46:2794–2800

    Article  PubMed  CAS  Google Scholar 

  22. Morgan BP, Dankert JR, Esser AF (1987) Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol 138:246–253

    PubMed  CAS  Google Scholar 

  23. Moskovich O, Fishelson Z (2007) Live cell imaging of outward and inward vesiculation induced by the complement c5b-9 complex. J Biol Chem 282:29977–29986

    Article  PubMed  CAS  Google Scholar 

  24. Pilzer D, Gasser O, Moskovich O, Schifferli JA, Fishelson Z (2005) Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springer Semin Immunopathol 27:375–387

    Article  PubMed  CAS  Google Scholar 

  25. Dalmasso AP, Falk RJ, Raij L (1989) The pathobiology of the terminal complement complexes. Complement Inflamm 6:36–48

    PubMed  CAS  Google Scholar 

  26. Vakeva A, Meri S (2000) Complement deposition in tissues. Methods Mol Biol 150:113–121

    PubMed  CAS  Google Scholar 

  27. Accardo-Palumbo A, Triolo G, Casiglia D, Salli L, Giardina E, Triolo G (1993) Two-site ELISA for quantification of the terminal C5b-9 complement complex in plasma. Use of monoclonal and polyclonal antibodies against a neoantigen of the complex. J Immunol Methods 163:169–172

    Article  PubMed  CAS  Google Scholar 

  28. Hugo F, Kramer S, Bhakdi S (1987) Sensitive ELISA for quantitating the terminal membrane C5b-9 and fluid-phase SC5b-9 complex of human complement. J Immunol Methods 99:243–251

    Article  PubMed  CAS  Google Scholar 

  29. Matsell DG, Roy S III, Tamerius JD, Morrow PR, Kolb WP, Wyatt RJ (1991) Plasma terminal complement complexes in acute poststreptococcal glomerulonephritis. Am J Kidney Dis 17:311–316

    PubMed  CAS  Google Scholar 

  30. Wurzner R (2000) Immunochemical measurement of complement components and activation products. Methods Mol Biol 150:103–112

    PubMed  CAS  Google Scholar 

  31. Moskovich O, Herzog LO, Ehrlich M, Fishelson Z (2012) Caveolin-1 and dynamin-2 are essential for removal of the complement C5b-9 complex via endocytosis. J Biol Chem 287:19904–19915

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Moskovich, O., Fishelson, Z. (2014). Quantification of Complement C5b-9 Binding to Cells by Flow Cytometry. In: Gadjeva, M. (eds) The Complement System. Methods in Molecular Biology, vol 1100. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-724-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-724-2_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-723-5

  • Online ISBN: 978-1-62703-724-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics