Skip to main content

Analysis of Community Dynamics in Environmental Samples Using Denaturing Gradient Gel Electrophoresis

  • Protocol
  • First Online:
Environmental Microbiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1096))

Abstract

Denaturing gradient gel electrophoresis (DGGE) is a culture-independent fingerprinting technique that allows for rapid comparative analysis of changes to microbial communities. 16S rRNA genes amplified from environmental samples can be separated based on their melting behavior in a denaturing gradient of urea and formamide. A fingerprint of the microbial community is generated with each band on the gel assumed to correspond to a different bacterial species. Community dynamics can then be assessed through statistical analysis of DGGE profiles and the sequencing of excised bands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Nielsen DS et al (2003) Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lactic acid bacteria in the human colon. Appl Environ Microbiol 69:7545–7548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Thompson CL, Holmes AJ (2009) A window of environmental dependence is evident in multiple phylogenetically distinct subgroups in the faecal community of piglets. FEMS Microbiol Lett 290:91–97

    Article  CAS  PubMed  Google Scholar 

  4. Shen J et al (2006) Molecular profiling of the Clostridium leptum subgroup in human fecal microflora by PCR-denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol 72:5232–5238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Walter J et al (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Favier CF et al (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68: 219–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Thompson CL, Wang B, Holmes AJ (2008) The immediate environment during postnatal development has long term impact on gut community structure in pigs. ISME J 2: 739–748

    Article  CAS  PubMed  Google Scholar 

  8. Thompson CL et al (2010) Community dynamics in the mouse gut microbiota: a possible role for IRF9-regulated genes in community homeostasis. PLoS One 5:e10335

    Article  PubMed Central  PubMed  Google Scholar 

  9. Smalla K et al (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67: 4742–4751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sambrook JR, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, New York

    Google Scholar 

  11. Murray AE, Hollibaugh JT, Orrego C (1996) Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl Environ Microbiol 62:2676–2780

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Neufeld JD, Mohn WW (2005) Fluorophore-labeled primers improve the sensitivity, versatility, and normalization of denaturing gradient gel electrophoresis. Appl Environ Microbiol 71:4893–4896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tourlomousis P et al (2009) PCR-denaturing gradient gel electrophoresis of complex microbial communities: a two-step approach to address the effect of gel-to-gel variation and allow valid comparisons across a large dataset. Microb Ecol 59:776–786

    Article  PubMed  Google Scholar 

  14. Nubel U et al (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thompson, C.L. (2014). Analysis of Community Dynamics in Environmental Samples Using Denaturing Gradient Gel Electrophoresis. In: Paulsen, I., Holmes, A. (eds) Environmental Microbiology. Methods in Molecular Biology, vol 1096. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-712-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-712-9_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-711-2

  • Online ISBN: 978-1-62703-712-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics