Skip to main content

FISH Methods in Cytogenetic Studies

  • Protocol
  • First Online:
Functional Analysis of DNA and Chromatin

Abstract

This chapter describes the various methods derived from the protocol of standard fluorescent in situ hybridization (FISH) that are used in human, animal, plant, and microbial studies. These powerful techniques allow us to detect and physically map on interphase nuclei, chromatin fibers, or metaphase chromosomes probes derived from single-copy genes to repetitive DNA sequences. Other variants of the technique enable the co-localization of genes and the overall comparison of the genome among individuals of the same species or of different taxa. A further variant detects and localizes bacteria on tissues and cells. Overall, this offers a remarkable multiplicity of possible applications ranging from strict physical mapping, to clinical and evolutionary studies, making it a powerful and informative complement to other molecular, functional, or genomic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buongiorno-Nardelli M, Amaldi F (1970) Autoradiographic detection of molecular hybrids between rRNA and DNA in tissue sections. Nature 225:946–948

    Article  PubMed  CAS  Google Scholar 

  2. John HA, Birnstiel ML, Jones KW (1969) RNA–DNA hybrids at the cytological level. Nature 223:582–587

    Article  PubMed  CAS  Google Scholar 

  3. Sreekantaiah C (2007) FISH panels for hematologic malignancies. Cytogenet Genome Res 118:284–296

    Article  PubMed  CAS  Google Scholar 

  4. Chang M, Malowany J, Mazurkiewicz J et al (2012) Genetic heterogeneity in HER2/neu testing by fluorescence in situ hybridization: a study of 2,522 cases. Mod Pathol 25:683–688

    Article  PubMed  CAS  Google Scholar 

  5. Volpi E, Bridger J (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotech 45:385–409

    Article  CAS  Google Scholar 

  6. Wang N (2002) Methodologies in cancer cytogenetics and molecular cytogenetics. Am J Med Genet 115:118–124

    Article  PubMed  Google Scholar 

  7. Gozzetti A, Le Beu M (2000) Fluorescence in situ hybridization: uses and limitations. Sem Hematol 37:320–333

    Article  CAS  Google Scholar 

  8. Schröck E, Garin IY, Köhler M (1999) Spectral karyotyping in clinical and tumor cytogenetics. In: Wegner RD (ed) Diagnostic cytogenetics. Springer, New York, pp 416–438

    Chapter  Google Scholar 

  9. Schrock E, Zschieschang P, O’Brien P et al (2006) Spectral karyotyping of human, mouse, rat and ape chromosomes—applications for genetic diagnostics and research. Cytogenet Genome Res 114:199–221

    Article  PubMed  CAS  Google Scholar 

  10. Imataka G, Arisaka O (2012) Chromosome analysis using spectral karyotyping (SKY). Cell Biochem Biophys 62:13–17

    Article  PubMed  CAS  Google Scholar 

  11. Tsuchiya D, Taga M (2001) Application of fibre-FISH (fluorescence in situ hybridization) to filamentous fungi: visualization of the rRNA gene cluster of the ascomycete Cochliobolus heterostrophus. Microbiol 147:1183–1187

    CAS  Google Scholar 

  12. Ersfeld K, Asbeck K, Gull K (1998) Direct visualisation of individual gene organisation in Trypanosoma brucei by high-resolution in situ hybridisation. Chromosoma 107:237–240

    Article  PubMed  CAS  Google Scholar 

  13. Kraan J, von Bergh A, Kleiverda K et al (2003) Multicolor fiber FISH. In: Fan Y-S (ed) Molecular cytogenetics, protocols and applications, vol 204, Meth Mol Biol., pp 143–153

    Chapter  Google Scholar 

  14. Florijn RJ, Bonden AJ, Vrolijk H et al (1995) High-resolution DNA fiber-FISH for genomic DNA mapping and colour bar-coding of large genes. Human Mol Genet 4:831–836

    Article  CAS  Google Scholar 

  15. Yang K, Zhang H, Converse R et al (2011) Fluorescence in situ hybridization on plant extended chromatin DNA fibers for single-copy and repetitive DNA sequences. Plant Cell Reports 30:1779–1786

    Article  PubMed  CAS  Google Scholar 

  16. Raap AK, Florijn RJ, Blonden LAJ et al (1996) Fiber FISH as a DNA mapping tool. Methods 9:67–73

    Article  PubMed  CAS  Google Scholar 

  17. Fransz PF, Alonso-Blanco C, Liharska TB et al (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9:421–430

    Article  PubMed  CAS  Google Scholar 

  18. Behrens S, Rühland C, Inácio J et al (2003) In situ accessibility of small-subunit rRNA of members of the domains Bacteria, Archaea, and Eucarya to Cy3-labeled oligonucleotide probes. Appl Environ Microbiol 69:1748–1758

    Article  PubMed  CAS  Google Scholar 

  19. Vaandrager JW, Schuuring E, Kluin-Nelemans HC et al (1998) DNA fiber fluorescence in situ hybridization analysis of immunoglobulin class switching in B-cell neoplasia: Aberrant CH gene rearrangements in follicle center-cell lymphoma. Blood 92:2871–2878

    PubMed  CAS  Google Scholar 

  20. Weler HUG, Wang L, Mullikin JC et al (1995) Quantitative DNA fiber mapping. Hum Mol Genet 4:1903–1910

    Article  Google Scholar 

  21. Woodward K, Kendall E, Vetrie D et al (1998) Pelizaeus-Merzbacher disease: identification of Xq22 proteolipid-protein duplications and characterization of breakpoints by interphase FISH. Am J Hum Genet 63:207–217

    Article  PubMed  CAS  Google Scholar 

  22. Zhang F, Gu W, Hurles M et al (2009) Copy number variation in human health, disease and evolution. Annu Rev Genomics Hum Genet 10:451–481

    Article  PubMed  CAS  Google Scholar 

  23. Aitman TJ, Dong R, Vyse TJ et al (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439:851–855

    Article  PubMed  CAS  Google Scholar 

  24. Bennett M (1995) The development and use of genomic in situ hybridization (GISH) as a new tool in plant biosystematics. In: Brandham P, Bennett M (eds) Kew chromosome conference IV. Royal Botanic Gardens. Kew, England, pp 167–183

    Google Scholar 

  25. Raina SN, Rani V (2001) GISH technology in plant genome research. Methods Cell Sci 23:83–104

    Article  PubMed  CAS  Google Scholar 

  26. Kallioniemi A, Kallioniemi O, Sudar D et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  PubMed  CAS  Google Scholar 

  27. Pinkel D, Albertson D (2005) Comparative genomic hybridization. Annu Rev Genomics Hum Genet 6:331–354

    Article  PubMed  CAS  Google Scholar 

  28. Pita M, Zabal-Aguirre M, Arroyo F et al (2008) Arcyptera fusca and Arcyptera tornosi repetitive DNA families: whole-comparative genomic hybridization (W-CGH) as a novel approach to the study of satellite DNA libraries. J Evol Biol 21:352–361

    PubMed  CAS  Google Scholar 

  29. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed  CAS  Google Scholar 

  30. Pernthaler J, Glöckner FO, Schönhuber W et al (2001) Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. In: Paul J (ed) Methods in microbiology: marine microbiology, vol 30. Academic Press Ltd, London, UK, pp 207–210

    Chapter  Google Scholar 

  31. Souza-Egipsy V, Gonzalez-Toril E, Zettler E et al (2008) Prokaryotic community structure in algal photosynthetic biofilms from extreme acidic streams in Rio Tinto (Huelva, Spain). Internat Microbiol 11:251–260

    CAS  Google Scholar 

  32. García-Moyano A, González-Toril E, Aguilera A et al (2007) Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Río Tinto (SW, Spain). Syst Appl Microbiol 30:601–614

    Article  PubMed  Google Scholar 

  33. Bojesen AM, Christensen H, Nielsen OL et al (2003) Detection of Gallibacterium spp. in chickens by fluorescent 16S rRNA in situ hybridization. J Clin Microbiol 41:5167–5172

    Article  PubMed  CAS  Google Scholar 

  34. Conord C, Despres L, Vallier A et al (2008) Long-term evolutionary stability of bacterial endosymbiosis in Curculionoidea: additional evidence of symbiont replacement in the Dryophthoridae family. Mol Biol Evol 25:859–868

    Article  PubMed  CAS  Google Scholar 

  35. Martinez P, Del Castillo P, Bella JL (2009) Cytological detection of Wolbachia in squashed and paraffin embedded insect tissues. Biotech Histochem 84:347–353

    Article  PubMed  CAS  Google Scholar 

  36. Cole JR, Wang Q, Cardenas E et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucl Acid Res 37(Suppl 1):D141–D145

    Article  CAS  Google Scholar 

  37. Parra I, Windle B (1993) High resolution visual mapping of stretched DNA by fluorescent hybridization. Nat Genet 5:17–21

    Article  PubMed  CAS  Google Scholar 

  38. Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101:13554–13559

    Article  PubMed  CAS  Google Scholar 

  39. Birren B, Green ED, Klapholz S et al (1997) In: Genome analysis: A laboratory manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York.

    Google Scholar 

  40. Dellaporta S, Wood J, Hicks J (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Repor 1:19–21

    Article  CAS  Google Scholar 

  41. Kidwell KK, Osborn TC (1992) Simple plant DNA isolation procedures. In: Beckman JS, Osborn TC (eds) Plant genomes: methods for genetic and physical mapping. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1–13

    Chapter  Google Scholar 

  42. Zwick MS, Hanson RE, Islam-Faridi MN et al (1997) A rapid procedure for the isolation of C0t-1 DNA from plants. Genome 40:138–142

    Article  PubMed  CAS  Google Scholar 

  43. Fidlerova H, Senger G, Kost M et al (1994) Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet Cell Genet 65:203–205

    Article  PubMed  CAS  Google Scholar 

  44. Wiegant J, Kalle W, Mullenders L et al (1992) High-resolution in situ hybridization using DNA halo preparations. Hum Mol Genet 1:587–591

    Article  PubMed  CAS  Google Scholar 

  45. Heiskanen M, Karhu R, Hellsten E et al (1994) High resolution mapping using fluorescence in situ hybridization to extended DNA fibers prepared from agarose-embedded cells. Biotech 17:928–932

    CAS  Google Scholar 

  46. Fuchs BM, Wallner G, Beisker W et al (1998) Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 64:4973–4982

    PubMed  CAS  Google Scholar 

  47. Ludwig W, Strunk O, Westram R et al (2004) ARB: a software environment for sequence data. Nucl Acid Res 32:1363–1371

    Article  CAS  Google Scholar 

  48. Stockert JC, López-Arias B, Del Castillo P et al (2012) Replacing xylene with n-heptane for paraffin embedding. Biotech Histochem 87:464–467

    Article  PubMed  CAS  Google Scholar 

  49. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl Acid Res 7:1869–1885

    Article  CAS  Google Scholar 

  50. Bedbrook JR, Jones J, O´Dell M et al (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. P.L. Mason (University of Glasgow) for revising the manuscript. This work has been supported by the Spanish grants CGL2009-08380/BOS and CGL2012-35007/BOS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Pita, M., Orellana, J., Martínez-Rodríguez, P., Martínez-Ramírez, Á., Fernández-Calvín, B., Bella, J.L. (2014). FISH Methods in Cytogenetic Studies. In: Stockert, J., Espada, J., Blázquez-Castro, A. (eds) Functional Analysis of DNA and Chromatin. Methods in Molecular Biology, vol 1094. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-706-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-706-8_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-705-1

  • Online ISBN: 978-1-62703-706-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics