Skip to main content

Predictive Binding Geometry of Ligands to DNA Minor Groove: Isohelicity and Hydrogen-Bonding Pattern

  • Protocol
  • First Online:
Functional Analysis of DNA and Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1094))

  • 4022 Accesses

Abstract

The interaction of drugs and dyes with nucleic acids, particularly when binding to DNA minor groove occurs, has increasing importance in biomedical sciences. This is due to the resulting biological activity and to the possibility of recognizing AT and GC base pairs. In such cases, DNA binding can be predicted if appropriate helical and hydrogen-bonding parameters are deduced from DNA models, and a simplified geometrical rule in the form of a stencil is then applied on computer-drawn molecules of interest. Relevant structure parameter values for minor groove binders are the length (4.6 < L < 5.4 Å) and angle (152 < σ < 156.5°) between three consecutive units, measured at the level of hydrogen donor or acceptor groups. Application of the stencil shows that predictive methods can aid in the design of new compounds, by checking the possible binding of isohelical sequence-specific ligands along the DNA minor groove.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gilbert DE, Feigon J (1991) Structural analysis of drug–DNA interactions. Curr Opin Struct Biol 1:439–445

    Article  CAS  Google Scholar 

  2. Krugh TR (1994) Drug–DNA interactions. Curr Opin Struct Biol 4:351–364

    Article  CAS  Google Scholar 

  3. Del Castillo P, Horobin RW, Blázquez-Castro A et al (2010) Binding of cationic dyes to DNA: distinguishing intercalation and groove binding mechanisms using simple experimental and numerical models. Biotech Histochem 85:247–256

    Article  PubMed  Google Scholar 

  4. Sirajuddin M, Ali S, Badshah A (2013) Drug–DNA interactions and their study by UV-visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol B Biol 124:1–19

    Article  CAS  Google Scholar 

  5. Horobin RW, Stockert JC, Rashid-Doubell F (2013) Uptake and localisation of small-molecule fluorescent probes in living cells: a critical appraisal of QSAR models and a case study concerning probes for DNA and RNA. Histochem Cell Biol 139:623–637

    Article  PubMed  CAS  Google Scholar 

  6. Zimmer C, Wähnert U (1986) Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Progr Biophys Mol Biol 47:31–112

    Article  CAS  Google Scholar 

  7. Stockert JC, Trigoso CI, Cuéllar T et al (1997) A new fluorescence reaction in DNA cytochemistry: microscopic and spectroscopic studies on the aromatic diamidino compound M&B 938. J Histochem Cytochem 45:97–105

    Article  PubMed  CAS  Google Scholar 

  8. Pinna-Senn E, Lisanti JA, Ortiz MI et al (2000) Specific heterochromatic banding of metaphase chromosomes using nuclear yellow. Biotech Histochem 75:132–140

    Article  PubMed  CAS  Google Scholar 

  9. Stockert JC, Pinna-Senn E, Bella JL et al (2005) DNA-binding fluorochromes: correlation between C-banding of mouse metaphase chromosomes and hydrogen bonding to adenine-thymine base pairs. Acta Histochem 106:413–420

    Article  PubMed  CAS  Google Scholar 

  10. Horobin RW, Stockert JC, Rashid-Doubell F (2006) Fluorescent cationic probes for nuclei of living cells: why are they selective? A quantitative structure-activity relations analysis. Histochem Cell Biol 126:165–175

    Article  PubMed  CAS  Google Scholar 

  11. Stockert JC (1985) Cytochemistry of nucleic acids: binding mechanisms of dyes and fluorochromes. Microsc Electr Biol Celular 9:89–131

    CAS  Google Scholar 

  12. Stockert JC, Del Castillo P, Llorente AR et al (1990) New fluorescence reactions in DNA cytochemistry. 1. Microscopic and spectroscopic studies on non-rigid fluorochromes. Anal Quant Cytol Histol 12:1–10

    PubMed  CAS  Google Scholar 

  13. Kopka ML, Larsen TA (1992) Netropsin and the lexitropsins. The search for sequence-specific minor-groove-binding ligands. In: Probst CL, Perun TJ (eds) Nucleic acid targeted drug design. Marcel Dekker, New York, Basel, pp 303–374

    Google Scholar 

  14. Geierstanger BH, Wemmer DE (1995) Complexes of the minor groove of DNA. Annu Rev Biophys Biomol Struct 24:463–493

    Article  PubMed  CAS  Google Scholar 

  15. Goodsell D, Dickerson RE (1986) Isohelical analysis of DNA groove-binding drugs. J Med Chem 29:727–733

    Article  PubMed  CAS  Google Scholar 

  16. Zasedatelev AS (1991) Geometrical correlations useful for design of sequence-specific DNA narrow groove binding ligands. FEBS Lett 281:209–211

    Article  PubMed  CAS  Google Scholar 

  17. Stockert JC (1995) Un método de comparación de curvaturas para predecir la unión de ligandos arqueados al canal menor del DNA. Técn Laboratorio (Barcelona) 17:18–22

    CAS  Google Scholar 

  18. Gresh N, Pullman B (1984) A theoretical study of the relative affinities of an aliphatic and an aromatic bisguanylhydrazone for the minor groove of double-stranded (dA-dT)n oligomers. Theoret Chim Acta 64:383–395

    Article  CAS  Google Scholar 

  19. Gresh N, Pullman B (1984) A theoretical study of the nonintercalative binding of berenil and stilbamidine to double-stranded (dA-dT)n oligomers. Mol Pharmacol 25:452–458

    PubMed  CAS  Google Scholar 

  20. Sansom CE, Laughton CA, Neidle S et al (1990) Structural studies on bio-active compounds. Part XIV. Molecular modelling of the interactions between pentamidine and DNA. Anti-Cancer Drug Design 5:243–248

    PubMed  CAS  Google Scholar 

  21. Grootenhuis PDJ, Kollman PA, Seibel RL et al (1990) Computerized selection of potential DNA binding compounds. Anti-Cancer Drug Des 5:237–242

    CAS  Google Scholar 

  22. Kahne D (1995) Strategies for the design of minor groove binders: a re-evaluation based on the emergence of site-selective carbohydrate binders. Chem Biol 2:7–12

    Article  PubMed  CAS  Google Scholar 

  23. De Clerq D, Dann O (1980) Diarylamidine derivatives as oncornaviral DNA inhibitors. J Med Chem 23:787–795

    Article  Google Scholar 

  24. Krey AK (1980) Non-intercalative binding to DNA. Progr Molec Subcell Biol 7:43–87

    Article  CAS  Google Scholar 

  25. Feigon J, Denny WA, Leupin W et al (1984) Interactions of antitumor drugs with natural DNA: 1H NMR study of binding mode and kinetics. J Med Chem 27:450–465

    Article  PubMed  CAS  Google Scholar 

  26. Shapiro TA, Englund PT (1990) Selective cleavage of kinetoplast DNA minicircles promoted by antitrypanosomal drugs. Proc Natl Acad Sci U S A 87:950–954

    Article  PubMed  CAS  Google Scholar 

  27. Tidwell RR, Jones SK, Geratz D et al (1990) Analogues of 1,5-bis(4-amidinophenoxy)pentane (Pentamidine) in the treatment of experimental Pneumocystis carinii pneumonia. J Med Chem 33:1252–1257

    Article  PubMed  CAS  Google Scholar 

  28. Denny WA (2001) DNA minor groove alkylating agents. Curr Med Chem 8:533–544

    Article  PubMed  CAS  Google Scholar 

  29. Reddy BS, Sharma SK, Lown JW (2001) Recent developments in sequence selective minor groove DNA effectors. Curr Med Chem 8:475–508

    Article  PubMed  CAS  Google Scholar 

  30. Pindur U, Jansen M, Lemster T (2005) Advances in DNA-ligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA binding and biology. Curr Med Chem 12:2805–2847

    Article  PubMed  CAS  Google Scholar 

  31. Zhang X, Zhang SC, Sun D et al (2011) New insight into the molecular mechanisms of the biological effects of DNA minor groove binders. PLoS One 6:e25822

    Article  PubMed  CAS  Google Scholar 

  32. Baguley BC (1982) Nonintercalative DNA-binding antitumour compounds. Mol Cell Biochem 43:167–181

    Article  PubMed  CAS  Google Scholar 

  33. Zakrzewska K, Lavery R, Pullman B (1983) Theoretical studies of the selective binding to DNA of two non-intercalating ligands. Netropsin and SN 18071. Nucleic Acids Res 11:8825–8839

    Article  PubMed  CAS  Google Scholar 

  34. Gago F, Reynolds CA, Richards WH (1989) The binding of nonintercalative drugs to alternating DNA sequences. Mol Pharmacol 35:232–241

    PubMed  CAS  Google Scholar 

  35. Stockert JC, Pelling C, Espada J (1997) New cationic fluorochromes from diaryloxazole scintillators: fluorescence of chromatin DNA induced by N-quaternary POPOP derivatives. Acta Histochem 99:195–205

    Article  PubMed  CAS  Google Scholar 

  36. Mikheikin AL, Zhuze AL, Zasedatelev AS (2000) Binding of symmetrical cyanine dyes into the DNA minor groove. J Biomol Struct Dyn 18:59–72

    Article  PubMed  CAS  Google Scholar 

  37. Karlsson HJ, Eriksson M, Perzon E et al (2003) Groove-binding unsymmetrical cyanine dyes for staining of DNA: Synthesis and characterization of the DNA-binding. Nucleic Acids Res 31:6227–6234

    Article  PubMed  CAS  Google Scholar 

  38. Yarmoluk SM, Kovalska V, Losytsky M (2008) Symmetric cyanine dyes for detecting nucleic acids. Biotech Histochem 83:131–145

    Article  PubMed  CAS  Google Scholar 

  39. Newton BA (1975) Berenil: a trypanocide with selective activity against extranuclear DNA. In: Corcoran JW, Hahn FE (eds) Antibiotics, vol 3. Springer, Berlin, pp 34–47

    Google Scholar 

  40. Brown DG, Sanderson MR, Garman E et al (1992) Crystal structure of a berenil-d(CGCAAATTTGCG) complex. An example of drug–DNA recognition based on sequence-dependent structural features. J Mol Biol 226:481–490

    Article  PubMed  CAS  Google Scholar 

  41. Jansen K, Lincoln P, Nordén B (1993) Binding of DAPI analogue 2,5-bis(4-amidinophenyl)furan to DNA. Biochemistry 32:6605–6612

    Article  PubMed  CAS  Google Scholar 

  42. Nunn CM, Jenkins TC, Neidle S (1993) Crystal structure of d(CGCGAATTCGCG) complexed with propamidine, a short-chain homologue of the drug pentamidine. Biochemistry 32:13838–13843

    Article  PubMed  CAS  Google Scholar 

  43. Kopka ML, Pjura PE, Goodsell DS et al (1987) Drugs and minor groove binding in B-DNA: netropsin and Hoechst 33258. Nucleic Acids Mol Biol 1:1–24

    Article  Google Scholar 

  44. Stockert JC, Del Castillo P, Bella JL (1990) DNA-induced distamycin A fluorescence. Histochemistry 94:45–47

    Article  PubMed  CAS  Google Scholar 

  45. Kopka ML, Yoon C, Goodsell D et al (1985) The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc Natl Acad Sci U S A 82:1376–1380

    Article  PubMed  CAS  Google Scholar 

  46. Pelton JG, Wemmer DE (1990) Binding modes of distamycin A with d(CGCAAATTTGCG)2 determined by two dimensional NMR. J Am Chem Soc 112:1393–1399

    Article  CAS  Google Scholar 

  47. Chen X, Ramakrishnan B, Sundaralingam M (1997) Crystal structures of the side-by-side binding of distamycin to AT-containing DNA octamers d(ICITACIC) and d(ICATATIC). J Mol Biol 267:1157–1170

    Article  PubMed  CAS  Google Scholar 

  48. Seifert JL, Connor RE, Kushon SA et al (1999) Spontaneous assembly of helical cyanine dye aggregates on DNA nanotemplates. J Am Chem Soc 121:2987–2995

    Article  CAS  Google Scholar 

  49. Baliga R, Crothers DM (2000) On the kinetics of distamycin binding to its target sites on duplex DNA. Proc Natl Acad Sci U S A 97:7814–7818

    Article  PubMed  CAS  Google Scholar 

  50. Mrksich M, Dervan PB (1993) Antiparallel side-by-side heterodimer for sequence-specific recognition in the minor groove of DNA by a distamycin/1-methylimidazole-2-carboxamide-netropsin pair. J Am Chem Soc 115:2572–2576

    Article  CAS  Google Scholar 

  51. White S, Szewczyk JW, Turner JM et al (1998) Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands. Nature 391:468–471

    Article  PubMed  CAS  Google Scholar 

  52. Stockert JC (1994) Stereoscopy of computer-drawn molecular structures. Biochem Educ 22:23–25

    Article  CAS  Google Scholar 

  53. Stockert JC, Abasolo MI (2011) Inaccurate chemical structure of dyes and fluorochromes found in the literature can be problematic for teaching and research. Biotech Histochem 86:52–60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank A. Blázquez-Castro, J. Espada, and R.W. Horobin for valuable collaboration. This work was supported by a grant (CTQ2010-20870-C03-03) from the Ministerio de Ciencia e Innovación, Spain.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Stockert, J.C. (2014). Predictive Binding Geometry of Ligands to DNA Minor Groove: Isohelicity and Hydrogen-Bonding Pattern. In: Stockert, J., Espada, J., Blázquez-Castro, A. (eds) Functional Analysis of DNA and Chromatin. Methods in Molecular Biology, vol 1094. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-706-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-706-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-705-1

  • Online ISBN: 978-1-62703-706-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics