Skip to main content

Scalable Production of Adenovirus Vectors

  • Protocol
  • First Online:
Adenovirus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1089))

Abstract

Recombinant adenoviruses (AdV) are highly efficient at gene transfer for a broad spectrum of cell types and species. They became one of the vectors of choice for gene delivery and expression of foreign proteins in gene therapy and vaccination purposes. To meet the need of significant amounts of adenoviral vectors for preclinical and possibly clinical uses, scalable and reproducible production processes are required.

In this chapter, we review processes used for scalable production of two types of first generation (E1-deleted) adenoviral vectors (Human and Canine) using stirred tank bioreactors. The production of adenovirus vectors using either suspension (HEK 293) or anchorage-dependent cells (MDCK-E1) are described to exemplify scalable production processes with different cell-culture types. The downstream processes will be covered in the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McConnell MJ, Imperiale MJ (2004) Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther 15(11):1022–1033

    Article  PubMed  CAS  Google Scholar 

  2. Tatsis N, Ertl HC (2004) Adenoviruses as vaccine vectors. Mol Ther 10(4):616–629

    Article  PubMed  CAS  Google Scholar 

  3. Dormond E, Perrier M, Kamen A (2009) From the first to the third generation adenoviral vector: what parameters are governing the production yield? Biotechnol Adv 27(2):133–144

    Article  PubMed  CAS  Google Scholar 

  4. Sheets RL, Stein J, Bailer RT, Koup RA, Andrews C, Nason M, He B, Koo E, Trotter H, Duffy C, Manetz TS, Gomez P (2008) Biodistribution and toxicological safety of adenovirus type 5 and type 35 vectored vaccines against human immunodeficiency virus-1 (HIV-1), Ebola, or Marburg are similar despite differing adenovirus serotype vector, manufacturer’s construct, or gene inserts. J Immunotoxicol 5(3):315–335

    Article  PubMed  CAS  Google Scholar 

  5. Shott JP, McGrath SM, Pau MG, Custers JH, Ophorst O, Demoitie MA, Dubois MC, Komisar J, Cobb M, Kester KE, Dubois P, Cohen J, Goudsmit J, Heppner DG, Stewart VA (2008) Adenovirus 5 and 35 vectors expressing Plasmodium falciparum circumsporozoite surface protein elicit potent antigen-specific cellular IFN-gamma and antibody responses in mice. Vaccine 26(23):2818–2823

    Article  PubMed  CAS  Google Scholar 

  6. Kremer EJ, Boutin S, Chillon M, Danos O (2000) Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 74(1):505–512

    Article  PubMed  CAS  Google Scholar 

  7. Perreau M, Kremer EJ (2005) Frequency, proliferation, and activation of human memory T cells induced by a nonhuman adenovirus. J Virol 79(23):14595–14605

    Article  PubMed  CAS  Google Scholar 

  8. Soudais C, Boutin S, Kremer EJ (2001) Characterization of cis-acting sequences involved in canine adenovirus packaging. Mol Ther 3(4):631–640

    Article  PubMed  CAS  Google Scholar 

  9. Bru T, Salinas S, Kremer EJ (2010) An update on canine adenovirus type 2 and its vectors. Viruses 2(9):2134–2153

    Article  PubMed  CAS  Google Scholar 

  10. Fallaux FJ, Bout A, van der Velde I, van den Wollenberg DJ, Hehir KM, Keegan J, Auger C, Cramer SJ, van Ormondt H, van der Eb AJ, Valerio D, Hoeben RC (1998) New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 9(13):1909–1917

    Article  PubMed  CAS  Google Scholar 

  11. Schiedner G, Hertel S, Kochanek S (2000) Efficient transformation of primary human amniocytes by E1 functions of Ad5: generation of new cell lines for adenoviral vector production. Hum Gene Ther 11(15):2105–2116

    Article  PubMed  CAS  Google Scholar 

  12. Cote J, Garnier A, Massie B, Kamen A (1998) Serum-free production of recombinant proteins and adenoviral vectors by 293SF-3F6 cells. Biotechnol Bioeng 59(5):567–575

    Article  PubMed  CAS  Google Scholar 

  13. Nadeau I, Gilbert PA, Jacob D, Perrier M, Kamen A (2002) Low-protein medium affects the 293SF central metabolism during growth and infection with adenovirus. Biotechnol Bioeng 77(1):91–104

    Article  PubMed  CAS  Google Scholar 

  14. Ferreira TB, Ferreira AL, Carrondo MJ, Alves PM (2005) Two different serum-free media and osmolality effect upon human 293 cell growth and adenovirus production. Biotechnol Lett 27(22):1809–1813

    Article  PubMed  CAS  Google Scholar 

  15. Maranga L, Aunins JG, Zhou W (2005) Characterization of changes in PER.C6 cellular metabolism during growth and propagation of a replication-deficient adenovirus vector. Biotechnol Bioeng 90(5):645–655

    Article  PubMed  CAS  Google Scholar 

  16. Mendonca RZ, Prado JCM, Pereira CA (1999) Attachment, spreading and growth of VERO cells on microcarriers for the optimization of large scale cultures. Bioprocess Biosyst Eng 20:565–571

    Google Scholar 

  17. Wu SC, Huang GY, Liu JH (2002) Production of retrovirus and adenovirus vectors for gene therapy: a comparative study using microcarrier and stationary cell culture. Biotechnol Prog 18(3):617–622

    Article  PubMed  CAS  Google Scholar 

  18. Kamen A, Henry O (2004) Development and optimization of an adenovirus production process. J Gene Med 6(Suppl 1):S184–S192

    Article  PubMed  CAS  Google Scholar 

  19. Silva AC, Peixoto C, Lucas T, Kuppers C, Cruz PE, Alves PM, Kochanek S (2010) Adenovirus vector production and purification. Curr Gene Ther 10(6):437–455

    Article  PubMed  CAS  Google Scholar 

  20. Fernandes P, Peixoto C, Santiago VM, Kremer EJ, Coroadinha AS, Alves PM (2013) Bioprocess development for canine adenovirus type 2 vectors. Gene Ther 20:353–360

    Google Scholar 

  21. Sandhu KS, Al-Rubeai M (2008) Monitoring of the adenovirus production process by flow cytometry. Biotechnol Prog 24(1):250–261

    Article  PubMed  CAS  Google Scholar 

  22. Segura MM, Puig M, Monfar M, Chillon M (2012) Chromatography purification of canine adenoviral vectors. Hum Gene Ther Methods 23:182–197

    Google Scholar 

  23. Peixoto C, Ferreira TB, Sousa MF, Carrondo MJ, Alves PM (2008) Towards purification of adenoviral vectors based on membrane technology. Biotechnol Prog 24(6):1290–1296

    Article  PubMed  CAS  Google Scholar 

  24. Croyle MA, Roessler BJ, Davidson BL, Hilfinger JM, Amidon GL (1998) Factors that influence stability of recombinant adenoviral preparations for human gene therapy. Pharm Dev Technol 3(3):373–383

    Article  PubMed  CAS  Google Scholar 

  25. Obenauer-Kutner LJ, Ihnat PM, Yang TY, Dovey-Hartman BJ, Balu A, Cullen C, Bordens RW, Grace MJ (2002) The use of field emission scanning electron microscopy to assess recombinant adenovirus stability. Hum Gene Ther 13(14):1687–1696

    Article  PubMed  CAS  Google Scholar 

  26. Croyle MA, Cheng X, Wilson JM (2001) Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther 8(17):1281–1290

    Article  PubMed  CAS  Google Scholar 

  27. Evans RK, Nawrocki DK, Isopi LA, Williams DM, Casimiro DR, Chin S, Chen M, Zhu DM, Shiver JW, Volkin DB (2004) Development of stable liquid formulations for adenovirus-based vaccines. J Pharm Sci 93(10):2458–2475

    Article  PubMed  CAS  Google Scholar 

  28. Cruz PE, Silva AC, Roldao A, Carmo M, Carrondo MJ, Alves PM (2006) Screening of novel excipients for improving the stability of retroviral and adenoviral vectors. Biotechnol Prog 22(2):568–576

    Article  PubMed  CAS  Google Scholar 

  29. Rexroad J, Wiethoff CM, Green AP, Kierstead TD, Scott MO, Middaugh CR (2003) Structural stability of adenovirus type 5. J Pharm Sci 92(3):665–678

    Article  PubMed  CAS  Google Scholar 

  30. Altaras NE, Aunins JG, Evans RK, Kamen A, Konz JO, Wolf JJ (2005) Production and formulation of adenovirus vectors. Adv Biochem Eng Biotechnol 99:193–260

    PubMed  CAS  Google Scholar 

  31. Rexroad J, Evans RK, Middaugh CR (2006) Effect of pH and ionic strength on the physical stability of adenovirus type 5. J Pharm Sci 95(2):237–247

    Article  PubMed  CAS  Google Scholar 

  32. Rexroad J, Martin TT, McNeilly D, Godwin S, Middaugh CR (2006) Thermal stability of adenovirus type 2 as a function of pH. J Pharm Sci 95(7):1469–1479

    Article  PubMed  CAS  Google Scholar 

  33. Cruz PE, Cunha A, Peixoto CC, Clemente J, Moreira JL, Carrondo MJ (1998) Optimization of the production of virus-like particles in insect cells. Biotechnol Bioeng 60(4):408–418

    Article  PubMed  CAS  Google Scholar 

  34. Maranga L, Cunha A, Clemente J, Cruz P, Carrondo MJ (2004) Scale-up of virus-like particles production: effects of sparging, agitation and bioreactor scale on cell growth, infection kinetics and productivity. J Biotechnol 107(1):55–64

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from Fundação para a Ciência e Tecnologia (FCT), Portugal (projects PTDC/EBB-BIO/119501/2010 and PTDC/EBB-BIO/118615/2010) and the FP7 EU project BrainCAV (HEALTH-HS_2008_222992). A.C. Silva and P. Fernandes acknowledge the FCT for the Ph.D. grants SFRH/BD/45786/2008 and SFRH/BD/70810/2010, respectively.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Silva, A.C., Fernandes, P., Sousa, M.F.Q., Alves, P.M. (2014). Scalable Production of Adenovirus Vectors. In: Chillón, M., Bosch, A. (eds) Adenovirus. Methods in Molecular Biology, vol 1089. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-679-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-679-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-678-8

  • Online ISBN: 978-1-62703-679-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics