Skip to main content

Carbon–Deuterium Bonds as Non-perturbative Infrared Probes of Protein Dynamics, Electrostatics, Heterogeneity, and Folding

  • Protocol
  • First Online:
Protein Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1084))

Abstract

Vibrational spectroscopy is uniquely able to characterize protein dynamics and microenvironmental heterogeneity because it possesses an inherently high temporal resolution and employs probes of ultimately high structural resolution—the bonds themselves. The use of carbon–deuterium (C–D) bonds as vibrational labels circumvents the spectral congestion that otherwise precludes the use of vibrational spectroscopy to proteins and makes the observation of single vibrations within a protein possible while being wholly non-perturbative. Thus, C–D probes can be used to site-specifically characterize conformational heterogeneity and thermodynamic stability. C–D probes are also uniquely useful in characterizing the electrostatic microenvironment experienced by a specific residue side chain or backbone due to its effect on the C–D absorption frequency. In this chapter we describe the experimental procedures required to use C–D bonds and FT IR spectroscopy to characterize protein dynamics, structural and electrostatic heterogeneity, ligand binding, and folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscape and motions of proteins. Science 254:1598–1603

    Article  PubMed  CAS  Google Scholar 

  2. Boehr DD, McElheny D, Dyson HJ et al (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–1642

    Article  PubMed  CAS  Google Scholar 

  3. Warshel A, Sharma PK, Kato M et al (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106:3210–3235

    Article  PubMed  CAS  Google Scholar 

  4. Zimmermann J, Oakman EL, Thorpe IF et al (2006) Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics. Proc Natl Acad Sci U S A 103:13722–13727

    Article  PubMed  CAS  Google Scholar 

  5. Barth A (2000) The infrared absorption of amino acid side chains. Prog Biophys Mol Biol 74:141–173

    Article  PubMed  CAS  Google Scholar 

  6. Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by ftir difference spectroscopy. Nature 439:109–112

    Article  PubMed  CAS  Google Scholar 

  7. Park ES, Andrews SS, Hu RB, Boxer SG (1999) Vibrational stark spectroscopy in proteins: a probe and calibration for electrostatic fields. J Phys Chem B 103:9813–9817

    Article  CAS  Google Scholar 

  8. Chin JK, Jimenez R, Romesberg FE (2001) Direct observation of protein vibrations by selective incorporation of spectroscopically observable carbon–deuterium bonds in cytochrome C. J Am Chem Soc 123:2426–2427

    Article  PubMed  CAS  Google Scholar 

  9. Chin JK, Jimenez R, Romesberg F (2002) Protein dynamics and cytochrome c: correlations between ligand vibrations and redox activity. J Am Chem Soc 124:1846–1847

    Article  PubMed  CAS  Google Scholar 

  10. Decatur SM (2006) Elucidation of residue-level structure and dynamics of polypeptides via isotope-edited infrared spectroscopy. Acc Chem Res 39:169–175

    Article  PubMed  CAS  Google Scholar 

  11. Fafarman AT, Webb LJ, Chuang JI et al (2006) Site-specific conversion of cysteine thiols into thiocyanate creates an IR Probe for electric fields in proteins. J Am Chem Soc 128:13356–13357

    Article  PubMed  CAS  Google Scholar 

  12. Oh KI, Lee JH, Joo C et al (2008) B-azidoalanine as an IR Probe: application to amyloid Aβ(16-22) aggregation. J Phys Chem B 112:10352–10357

    Article  PubMed  CAS  Google Scholar 

  13. Cremeens ME, Zimmermann J, Yu W et al (2009) Direct observation of structural heterogeneity in a beta-sheet. J Am Chem Soc 131:5726–5727

    Article  PubMed  CAS  Google Scholar 

  14. Thielges MC, Case DA, Romesberg FE (2008) Carbon–deuterium bonds as probes of dihydrofolate reductase. J Am Chem Soc 130:6597–6603

    Article  PubMed  CAS  Google Scholar 

  15. Thielges MC, Groff D, Cellitti S et al (2009) Efforts toward the direct experimental characterization of enzyme microenvironments: tyrosine100 in dihydrofolate reductase. Angew Chem Int Ed 48:3478–3481

    Article  Google Scholar 

  16. Getahun Z, Huang CY, Wang T et al (2003) Using nitrile-derivatized amino acids as infrared probes of local environment. J Am Chem Soc 125:405–411

    Article  PubMed  CAS  Google Scholar 

  17. Tucker MJ, Getahun Z, Nanda V et al (2004) A new method for determining the local environment and orientation of individual side chains of membrane-binding peptides. J Am Chem Soc 126:5078–5079

    Article  PubMed  CAS  Google Scholar 

  18. Mukherjee S, Chowdhury P, DeGrado WF et al (2007) Site-specific hydration status of an amphipathic peptide in AOT reverse micelles. Langmuir 23:11174–11179

    Article  PubMed  CAS  Google Scholar 

  19. Fafarman AT, Boxer SG (2010) Nitrile bonds as infrared probes of electrostatics in ribonuclease S. J Phys Chem B 114:13536–13544

    Article  PubMed  CAS  Google Scholar 

  20. Schultz KC, Supekova L, Ryu Y et al (2006) A genetically encoded infrared probe. J Am Chem Soc 128:13984–13985

    Article  PubMed  CAS  Google Scholar 

  21. Zimmermann J, Thielges MC, Seo YJ et al (2011) Cyano groups as probes of protein microenvironments and dynamics. Angew Chem Int Ed 50:8333–8337

    Article  CAS  Google Scholar 

  22. Ohno S, Matsui M, Yokogawa T et al (2007) Site-selective post-translational modification of proteins using an unnatural amino acid, 3-azidotyrosine. J Biochem 141:335–343

    Article  PubMed  CAS  Google Scholar 

  23. Ye S, Huber T, Vogel P et al (2009) FTIR analysis of GPCR activation using azido probes. Nat Chem Biol 6:397–399

    Article  Google Scholar 

  24. Taskent-Sezgin H, Chung J, Banerjee PS et al (2010) Azidohomoalanine: a conformationally sensitive IR Probe of protein folding, protein structure, and electrostatics. Angew Chem Int Ed 49:7473–7475

    Article  CAS  Google Scholar 

  25. Fafarman AT, Sigala PA, Herschlag D et al (2010) Decomposition of vibrational shifts of nitriles into electrostatic and hydrogen-bonding effects. J Am Chem Soc 132:12811–12813

    Article  PubMed  CAS  Google Scholar 

  26. Sagle LB, Zimmermann J, Matsuda S et al (2006) Redox-coupled dynamics and folding in cytochrome c. J Am Chem Soc 128:7909–7915

    Article  PubMed  CAS  Google Scholar 

  27. Zimmermann J, Gundogdu K, Cremeens ME et al (2009) Efforts toward developing probes of protein dynamics: vibrational dephasing and relaxation of carbon–deuterium stretching modes in deuterated leucine. J Phys Chem B 113:7991–7994

    Article  PubMed  CAS  Google Scholar 

  28. Sagle LB, Zimmermann J, Dawson PE et al (2004) A high-resolution probe of protein folding. J Am Chem Soc 126:3384–3385

    Article  PubMed  CAS  Google Scholar 

  29. Mirkin NG, Krimm S (2007) Conformation dependence of the Cαdα stretch mode in peptides. 1. Isolated alanine peptide structures. J Phys Chem A 111:5300–5303

    Article  PubMed  CAS  Google Scholar 

  30. Kinnaman CS, Cremeens ME, Romesberg FE et al (2006) Infrared line shape of an alpha-carbon deuterium-labeled amino acid. J Am Chem Soc 128:13334–13335

    Article  PubMed  CAS  Google Scholar 

  31. Weinkam P, Zimmermann J, Sagle LB et al (2008) Characterization of alkaline transitions in ferricytochrome c using carbon–deuterium infrared probes. Biochemistry 47:13470–13480

    Article  PubMed  CAS  Google Scholar 

  32. Terranova ZL, Corcelli SA (2012) Monitoring intramolecular proton transfer with two-dimensional infrared spectroscopy: a computational prediction. J Phys Chem Lett 3:1842–1846

    Article  CAS  Google Scholar 

  33. Miller CS, Corcelli SA (2010) Carbon−deuterium vibrational probes of the protonation state of histidine in the gas-phase and in aqueous solution. J Phys Chem B 114:8565–8573

    Article  PubMed  CAS  Google Scholar 

  34. Sagle LB, Zimmermann J, Dawson PE et al (2006) Direct and high resolution characterization of cytochrome c equilibrium folding. J Am Chem Soc 128:14232–14233

    Article  PubMed  CAS  Google Scholar 

  35. Dawson PE, Kent SB (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960

    Article  PubMed  CAS  Google Scholar 

  36. Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3:429–438

    Article  PubMed  CAS  Google Scholar 

  37. Flavell RR, Muir TW (2009) Expressed protein ligation (Epl) in the study of signal transduction, ion conduction, and chromatin biology. Acc Chem Res 42:107–116

    Article  PubMed  CAS  Google Scholar 

  38. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  PubMed  CAS  Google Scholar 

  39. Xie JM, Schultz PG (2005) An expanding genetic code. Methods 36:227–238

    Article  PubMed  CAS  Google Scholar 

  40. Pace CN (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol 131:266–280

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Foundation under Grant No. 0346967.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media,New York

About this protocol

Cite this protocol

Zimmermann, J., Romesberg, F.E. (2014). Carbon–Deuterium Bonds as Non-perturbative Infrared Probes of Protein Dynamics, Electrostatics, Heterogeneity, and Folding. In: Livesay, D. (eds) Protein Dynamics. Methods in Molecular Biology, vol 1084. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-658-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-658-0_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-657-3

  • Online ISBN: 978-1-62703-658-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics