Skip to main content

Optimization of Physicochemical and Pharmacological Properties of Peptide Drugs by Glycosylation

  • Protocol
  • First Online:
Peptide Modifications to Increase Metabolic Stability and Activity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1081))

Abstract

Many biological interactions and functions are mediated by glycans, leading to the emerging importance of carbohydrate and glycoconjugate chemistry in the design of novel drug therapeutics. In addition to direct effects on biological activity, sugar addition appears to alter many physicochemical and pharmacological properties of the peptide backbone. Consequently, glycosylation has been often used to improve various less than optimal features of peptide drug leads.

In order to study the effects that naturally occurring and/or nonnatural glycans have on peptide drug solubility, conformation, proteolytic resistance, membrane permeability, and toxicity, it is essential to have convenient synthetic access toward synthesis of glycopeptide analogs. The crucial step in the synthesis of glycopeptides is the introduction of the carbohydrate group. The preformed glycosyl amino acid building block is the most commonly employed approach used in glycopeptide synthesis.

In this review, we will describe various synthetic approaches to prepare N- and O-glycopeptides bearing simple monosaccharides as a tool to improve peptide therapeutic efficacy by glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Filice M, Palomo JM (2012) Monosaccharide derivatives as central scaffolds in the synthesis of glycosylated drugs. RSC Adv 2:1729

    Google Scholar 

  2. Gracia SR, Gaus K, Sewald N (2009) Synthesis of chemically modified bioactive peptides: recent advances, challenges and developments for medicinal chemistry. Future Med Chem 1:1289–1310

    Google Scholar 

  3. Adessi C, Soto C (2002) Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem 9:963–978

    Google Scholar 

  4. Jensen KJ, Brask J (2005) Carbohydrates in peptide and protein design. Biopolymers 80:747–761

    Google Scholar 

  5. Otvos L (ed) (2008) Peptide-based drug design: methods and protocols, vol 494. Methods in molecular biology. Humana Press, Totowa, NJ, USA

    Google Scholar 

  6. Simerska P, Moyle PM, Toth I (2011) Modern lipid-, carbohydrate-, and peptide-based delivery systems for peptide, vaccine, and gene products. Med Res Rev 31:520–547

    Google Scholar 

  7. Sola RJ, Griebenow K (2010) Glycosylation of therapeutic proteins an effective strategy to optimize efficacy. BioDrugs 24:9–21

    Google Scholar 

  8. Solá RJ, Rodríguez-Martínez JA, Griebenow K (2007) Modulation of protein biophysical properties by chemical glycosylation: biochemical insights and biomedical implications. Cell Mol Life Sci 64:2133–2152

    Google Scholar 

  9. Byrne B, Donohoe GG, O’Kennedy R (2007) Sialic acids: carbohydrate moieties that influence the biological and physical properties of biopharmaceutical proteins and living cells. Drug Discov Today 12:319–326

    Google Scholar 

  10. Solá RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98:1223–1245

    Google Scholar 

  11. Tams JW, Vind J, Welinder KG (1999) Adapting protein solubility by glycosylation. N-Glycosylation mutants of Coprinus cinereus peroxidase in salt and organic solutions. Biochim Biophys Acta 1432:214–221

    Google Scholar 

  12. Solá RJ, Griebenow K (2006) Influence of modulated structural dynamics on the kinetics of alpha-chymotrypsin catalysis. FEBS J 273:5303–5319

    Google Scholar 

  13. Bagger HL, Fuglsang CC, Westh P (2005) Hydration of a glycoprotein: relative water affinity of peptide and glycan moieties. Eur Biophys J 35:367–371

    Google Scholar 

  14. Cheng S, Edwards SA, Jiang Y, Gräter F (2010) Glycosylation enhances peptide hydrophobic collapse by impairing solvation. Chem Phys Chem 11:2367–2374

    Google Scholar 

  15. Lawson EQ, Hedlund BE, Ericson ME, Mood DA, Litman GW, Middaugh R (1983) Effec of carbohydrate on protein stability. Arch Biochem Biophys 220:572–575

    Google Scholar 

  16. Wormald MR, Petrescu AJ, Pao Y, Glithero A, Elliott T, Dwek RA (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modeling. Chem Rev 102:371–386

    Google Scholar 

  17. Høiberg-Nielsen R, Westh P, Arleth L (2009) The effect of glycosylation on interparticle interactions and dimensions of native and denatured phytase. Biophys J 96:153–161

    Google Scholar 

  18. Otvos L Jr, Cudic M (2003) Conformation of glycopeptides. Mini-Rev Med Chem 3:703–711

    Google Scholar 

  19. Tagashira M, Kazunori T (2005) Effect of peptide glycosylation on the conformation of the peptide backbone. Trends Glycosci Glyc 17:145–157

    Google Scholar 

  20. Bosques CJ, Tschampel SM, Woods RJ, Imperiali B (2004) Effects of glycosylation on peptide conformation: a synergistic experimental and computational study. J Am Chem Soc 126:8421–8425

    Google Scholar 

  21. Banna JG, Peyton DH, Bachinger HP (2000) Sweet is stable: glycosylation stabilizes collagen. FEBS Lett 473:237–240

    Google Scholar 

  22. Tagashira M, Iijima H, Isogai Y, Hori M, Takamatsu S, Fujibayashi Y, Yoshizawa-Kumagaye K, Isaka S, Nakajima K, Yamamoto T, Teshima T, Toma K (2001) Site-dependent effect of O-glycosylation on the conformation and biological activity of calcitonin. Biochemistry 40:11090–11095

    Google Scholar 

  23. Cudic M, Hildegund CJE, Otvos LJ (2002) Synthesis, conformation, and T-helper cell stimulation of an O-linked glycopeptide epitope containing extended carbohydrate side-chains. Bioorg Med Chem 10:3859–3870

    Google Scholar 

  24. Borgert A, Heimburg-Molinaro J, Song X, Lasanajak Y, Ju T, Liu M, Thompson P, Ragupathi G, Barany G, Smith DF, Cummings RD, Live D (2012) Deciphering structural elements of mucin glycoprotein recognition. ACS Chem Biol 7:1031–1039

    Google Scholar 

  25. Naganagowda GA, Gururaja TL, Satyanarayana J, Levine MJ (1999) NMR analysis of human salivary mucin (MUC7) derived O-linked model glycopeptides: comparison of structural features and carbohydrate-peptide interactions. J Pept Res 54:290–310

    Google Scholar 

  26. Kindahl L, Sandström C, Craig AG, Norberg T, Kenne L (2002) 1H NMR studies on the solution conformation of contulakin-G and analogues. Can J Chem 80:1022–1031

    Google Scholar 

  27. Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635

    Google Scholar 

  28. Disney MD, Hook DF, Namoto K, Seeberger PH, Seebach D (2005) N-linked glycosylated beta-peptides are resistant to degradation by glycoamidase A. Chem Biodiv 2:1624–1634

    Google Scholar 

  29. Ueda T, Tomita K, Notsu Y, Ito T, Fumoto M, Takakura T, Nagatome H, Takimoto A, Mihara S, Togame H (2009) Chemoenzymatic synthesis of glycosylated glucagon-like peptide 1: effect of glycosylation on proteolytic resistance and in vivo blood glucose-lowering activity. J Am Chem Soc 131:6237–6245

    Google Scholar 

  30. Huang W, Groothuys S, Heredia A, Kuijpers BHM, Rutjes FPJT, van Delft FL, Wang LF (2009) Enzymatic glycosylation of triazole-linked GlcNAc/Glc-peptides: synthesis, stability and anti-HIV activity of triazole-linked HIV-1 gp41 glycopeptide C34 analogues. ChemBioChem 10:1234–1242

    Google Scholar 

  31. Pedersen SL, Steentoft C, Vrang N, Jensen KJ (2010) Glyco-scan: varying glycosylation in the sequence of the peptide hormone PYY3-36 and its effect on receptor selectivity. ChemBioChem 11:366–374

    Google Scholar 

  32. Powell MF, Stewart T, Otvos L Jr, Urge L, Gaeta FCA, Sette A, Arrhenius T, Thomson D, Soda K, Colon SM (1993) Peptide stability in drug development. II. Effect of single amino acid substitution and glycosylation on peptide reactivity in human serum. Pharm Res 10:1268–1273

    Google Scholar 

  33. Pardridge WM (1999) Blood–brain barrier biology and methodology. J Neurovirol 5:556–569

    Google Scholar 

  34. Chen Y, Liu L (2012) Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliver Rev 64:640–665

    Google Scholar 

  35. Pardridge WM (2005) The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14

    Google Scholar 

  36. Mercadante S, Arcuri E (2009) Delivery of opioid analgesics to the brain: the role of blood–brain barrier. Gene Ther Mol Biol 13:82–90

    Google Scholar 

  37. Egleton RD, Davis TP (2005) Development of neuropeptide drugs that cross the blood–brain barrier. NeuroRx 2:44–53

    Google Scholar 

  38. Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP (2001) Peptide drug modifications to enhance bioavailability and blood–brain barrier permeability. Peptides 22:2329–2343

    Google Scholar 

  39. Masand G, Hanif K, Sen S, Ahsan A, Maiti S, Pasha S (2006) Synthesis, conformational and pharmacological studies of glycosylated chimeric peptides of Met-enkephalin and FMRFa. Brain Res Bull 68:329–334

    Google Scholar 

  40. Egleton RD, Mitchell SA, Huber JD, Palian MM, Polt R, Davis TP (2001) Improved blood–brain barrier penetration and enhanced analgesia of an opioid peptide by glycosylation. J Pharmacol Exp Ther 299:967–972

    Google Scholar 

  41. Hsieh YSY, Taleski D, Wilkinson BL, Wijeyewickrema LC, Adams TE, Pike RN, Payne RJ (2012) Effect of O-glycosylation and tyrosine sulfation of leech-derived peptides on binding and inhibitory activity against thrombin. Chem Commun 48:1547–1549

    Google Scholar 

  42. Motiei L, Rahimipour S, Thayer DA, Wong C, Ghadiri MR (2009) Antibacterial cyclic d,l-α-glycopeptides. Chem Commun 25:3693–3695

    Google Scholar 

  43. Gobbo M, Biondi L, Filira F, Gennaro R, Banincasa M, Scolaro B, Rocchi R (2002) Antimicrobial peptides: synthesis and antibacterial activity of linear and cyclic drosocin and apidaecin 1b analogues. J Med Chem 45:4494–4504

    Google Scholar 

  44. Arsequell G, Rosa M, Mayato C, Dorta R, Gonzalez-Nunez V, Barreto-Valer K, Marcelo F, Calle LP, Vazquez JT, Rodriguez RE, Jimenez-Barbero J, Valencia G (2011) Synthesis, biological evaluation and structural characterization of novel glycopeptide analogues of nociceptin N/OFQ. Org Biomol Chem 9:6133–6142

    Google Scholar 

  45. Kovalszky I, Surmacz E, Scolaro L, Cassone M, Feria R, Sztodola A, Olah J, Hatfield MPD, Lovas S, Otvos L Jr (2010) Leptin-based glycopeptide induces weight loss and simultaneously restores fertility in animal models. Diabetes Obes Metab 12:393–402

    Google Scholar 

  46. Ueda T, Ito T, Tomita K, Togame H, Fumoto M, Asakura K, Oshima T, Nihimura S-I, Hanasaki K (2010) Identification of glycosylated exendin-4 analogue with prolonged blood glucose-lowering activity through glycosylation scanning substitution. Bioorg Med Chem Lett 20:4631–4634

    Google Scholar 

  47. Kihlberg J, Ahmab J (1995) Glycosylated peptide hormones: pharmacological properties and conformational studies of analogues of [1-desamino,8-d-arginine]vasopressin. J Med Chem 38:161–169

    Google Scholar 

  48. Kihlberg J, Elofsson M, Salvador LA (1997) Direct synthesis of glycosylated amino acids from carbohydrate peracetates and Fmoc amino acids: solid-phase synthesis of biomedicinally interesting glycopeptides. Method Enzymol 289:221–245

    Google Scholar 

  49. Meldal M, Bock K (1994) A general approach to the synthesis of O- and N-linked glycopeptides. Glycoconjugate J 11:59–63

    Google Scholar 

  50. Kunz H (1987) Synthesis of glycopeptides, partial structures of biological recognition components. Angew Chem 99:297–311

    Google Scholar 

  51. Mogemark M, Kihlberg J (2006) Glycopeptides. In: Levy DE, Fügedi P (eds) Organic chemistry of sugars. CRC Press, Taylor and Francis Group, Boca Raton, pp 755–801

    Google Scholar 

  52. Seitz O (2000) Glycopeptide synthesis and the effects of glycosylation on protein structure and activity. ChemBioChem 1:214–246

    Google Scholar 

  53. Taylor CM (1998) Glycopeptides and glycoproteins: focus on the glycosidic linkage. Tetrahedron Lett 54:11317–11362

    Google Scholar 

  54. Conroy T, Jolliffe KA, Payne RJ (2010) Synthesis of N-linked glycopeptides via solid-phase aspartylation. Org Biomol Chem 8:3723–3733

    Google Scholar 

  55. Bodanszky M, Natarajan S (1975) Side reactions in peptide-synthesis. 2. Formation of succinimide derivatives from aspartyl residues. J Org Chem 40:2495–2499

    Google Scholar 

  56. Hollosi M, Kollat E, Laczko I, Medzihradsky KF, Thurin J, Otvos LJ (1991) Solid-phase synthesis of glycopeptides: glycosylation of resin-bound serine-peptides by 3,4,6-tri-O-acetyl-d-glucose-oxazoline. Tetrahedron Lett 32:1531–1534

    Google Scholar 

  57. Andrews DM, Seale PW (1993) Solid-phase synthesis of O-mannosylated peptides: two strategies compared. Int J Pept Protein Res 42:165–170

    Google Scholar 

  58. Paulsen H, Schleyer A, Mathieux N, Meldal M, Bock K (1997) New solid-phase oligosaccharide synthesis on glycopeptides bound to a solid phase. J Chem Soc Perkin Trans 1 3:281–293

    Google Scholar 

  59. Meldal M (1994) Glycopeptide synthesis. In: Lee YC, Lee RT (eds) Neoglycoconjugates: preparation and applications. Academic, San Diego, pp 145–198

    Google Scholar 

  60. Kihlberg J, Elofsson M (1997) Solid-phase synthesis of glycopeptides: immunological studies with T cell simulating glycopeptides. Curr Med Chem 4:79–110

    Google Scholar 

  61. Herzner H, Reipen T, Schultz M, Kunz H (2000) Synthesis of glycopeptides containing carbohydrates and peptide recognition motifs. Chem Rev 100:4495–4537

    Google Scholar 

  62. Merrifield B (1997) Concept and early development of solid-phase peptide synthesis. Method Enzymol 289:3–13

    Google Scholar 

  63. Liu M, Young VG, Lohani S, Live D, Barany G (2005) Syntheses of TN building blocks Nα-(9-fluorenylmethoxycarbonyl)-O-(3,4,6-tri-O-acetyl-2-azido-2-deoxy-α-d-galactopyranosyl)-l-serine/l-threonine pentafluorophenyl esters: comparison of protocols and elucidation of side reactions. Carbohydr Res 340:1273–1285

    Google Scholar 

  64. Koenig W, Geiger R (1970) New method for the synthesis of peptides: activation of the carboxyl group with dicyclohexylcarbodiimide by using 1-hydroxybenzotriazoles as additives. Chem Ber 103:788–798

    Google Scholar 

  65. Meldal M, Jensen KJ (1990) Pentafluorophenyl esters for the temporary protection of the α-carboxy group in solid phase glycopeptide synthesis. J Chem Soc Chem Commun 6:483–485

    Google Scholar 

  66. Lindhorst TK (2003) Essentials of carbohydrate chemistry and biochemistry, 2nd edn. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Google Scholar 

  67. Wolfrom ML, Thompson A (1963) Acetylation. Meth Carbohydr Chem 2:211–215

    Google Scholar 

  68. Salvador LA, Elofsson M, Kihlberg J (1995) Preparation of building blocks for glycopeptide synthesis by glycosylation of Fmoc amino acids having unprotected carboxyl groups. Tetrahedron 51:5643–5656

    Google Scholar 

  69. Schmidt RR, Kinzy W (1994) Anomeric-oxygen activation for glycoside synthesis: the trichloroacetimidate method. Adv Carbohydr Chem Biochem 50:21–123

    Google Scholar 

  70. Schmidt RR (1986) New methods for the synthesis of glycosides and oligosaccharides—are there alternatives to the Koenigs-Knorr method? Angew Chem 98:213–236

    Google Scholar 

  71. Broncel M, Falenski J, Wagner S, Hackenberger CP, Koksch B (2010) How post-translational modifications influence amyloid formation: a systematic study of phosphorylation and glycosylation in model peptides. Chem Eur J 16:7881–7888

    Google Scholar 

  72. Polt R, Szabo L, Treiberg J, Li Y, Hruby V (1992) General methods for alpha- or beta-O-Ser/Thr glycosides and glycopeptides. Solid-phase synthesis of O-glycosyl cyclic enkephalin analogues. J Am Chem Soc 114:10249–10258

    Google Scholar 

  73. Bilsky E, Egleton R, Mitchell S, Palian M, Davis P, Huber J, Jones H, Yamamura H, Janders J, Davis T, Porreca F, Hruby V, Polt R (2000) Enkephalin glycopeptide analogues produce analgesia with reduced dependence liability. J Med Chem 43:2586–2590

    Google Scholar 

  74. Mitchell SA, Pratt MR, Hruby VJ, Polt R (2001) Solid-phase synthesis of O-linked glycopeptide analogues of enkephalins. J Org Chem 66:2327–2342

    Google Scholar 

  75. Talat S, Thiruvikraman M, Kumari S, Kaur KJ (2011) Glycosylated analogs of formaecin I and drosocin exhibit differential pattern of antibacterial activity. Glycoconjugate J 28:537–555

    Google Scholar 

  76. Dullenkopf W, Castro-Palomino JC, Manzoni L, Schmidt RR (1996) N-trichloroethoxycarbonyl-glucosamine derivatives as glycosyl donors. Carbohydr Res 296:135–147

    Google Scholar 

  77. Filira F, Biondi L, Cavaggion F, Scolaro B, Rocchi R (1990) Synthesis of O-glycosylated tuftsins by utilizing threonine derivatives containing an unprotected monosaccharide moiety. Int J Pept Prot Res 36:86–90

    Google Scholar 

  78. Brimble MA, Kowalczyk R, Harris PWR, Dunbar PR, Muir VJ (2008) Synthesis of fluorescein-labelled O-mannosylated peptides as components for synthetic vaccines: comparison of two synthetic strategies. Org Biomol Chem 6:112–121

    Google Scholar 

  79. Jones JKN, Perry MB, Shelton B, Walton DT (1961) Carbohydrate-protein linkage in glycoproteins. I. Syntheses of some model substituted amides and a (2-amino-2-deoxy-d-glucosyl)-l-serine. Can J Chem 39:1005–1016

    Google Scholar 

  80. Vargas-Berenguel A, Meldal M, Paulsen H, Bock K (1994) Convenient synthesis of O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-serine and -threonine building blocks for solid-phase glycopeptide assembly. J Am Chem Soc Perkin Trans 1 18:2615–2619

    Google Scholar 

  81. Schultz M, Kunz H (1992) Enzymatic glycosylation of O-glycopeptides. Tetrahedron Lett 33:5319–5322

    Google Scholar 

  82. Meinjohanns E, Meldal M, Bock K (1995) Efficient synthesis of O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-Ser/Thr building blocks for SPPS of O-GlcNAc glycopeptides. Tetrahedron Lett 36:9205–9208

    Google Scholar 

  83. Saha U, Schmidt R (1997) Efficient synthesis of O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-serine and -threonine building blocks for glycopeptide formation. J Chem Soc Perkin Trans 1 12:1855–1860

    Google Scholar 

  84. Meinjohanns E, Vargas-Berenguel A, Meldal M, Paulsen H, Bock K (1995) Comparison of N-Dts and N-Aloc in the solid-phase synthesis of O-GlcNAc glycopeptide fragments of RNA-polymerase II and mammalian neurofilaments. J Chem Soc Perkin Trans 1 17:2165–2175

    Google Scholar 

  85. Jensen KJ, Hansen PR, Venugopal D, Barany G (1996) Synthesis of 2-acetamido-2-deoxy-β-d-glucopyranose O-glycopeptides from N-dithiasuccinoyl-protected derivatives. J Am Chem Soc 118:3148–3155

    Google Scholar 

  86. Ellervik U, Magnusson G (1996) Glycosylation with N-Troc-protected glycosyl donors. Carbohydr Res 280:251–260

    Google Scholar 

  87. Arsequell G, Krippner L, Dwek RA, Wong SYC (1994) Building blocks for solid-phase glycopeptide synthesis: 2-acetamido-2-deoxy-β-d-glycosides of FmocSerOH and FmocThrOH. J Chem Soc Chem Commun 20:2383–2384

    Google Scholar 

  88. Norberg T, Luning B, Tejbrant J (1994) Solid-phase synthesis of O-glycopeptides. Method Enzymol 247:87–106

    Google Scholar 

  89. Kuduk SD, Schwarz JB, Chen X-T, Glunz PW, Sames D, Ragupathi G, Livingston PO, Danishefsky SJ (1998) Synthetic and immunological studies on clustered modes of mucin-related Tn and TF O-linked antigens: the preparation of a glycopeptide-based vaccine for clinical trials against prostate cancer. J Am Chem Soc 120:12474–12485

    Google Scholar 

  90. Vuljanic T, Bergquist KE, Clausen H, Roy S, Kihlberg J (1996) Piperidine is preferred to morpholine for Fmoc cleavage in solid phase glycopeptide synthesis as exemplified by preparation of glycopeptides related to HIV gp120 and mucins. Tetrahedron 52:7983–8000

    Google Scholar 

  91. Kunz H, Birnbach S (1986) Synthesis of O-glycopeptides of the tumor-associated Tn- and T-antigen type and their binding to bovine serum albumin. Angew Chem Int Ed 98:360–362

    Google Scholar 

  92. Paulsen H, Adermann K (1989) Synthesis of O-glycopeptides of the N-terminus of interleukin-2. Liebigs Ann Chem 8:751–769

    Google Scholar 

  93. Liebe B, Kunz H (1997) Solid-phase synthesis of a tumor-associated sialyl-TN antigen glycopeptide with a partial sequence of the “tandem repeat” of the MUC-1 mucin. Angew Chem Int Ed 36:618–621

    Google Scholar 

  94. Plattner C, Hoefener M, Sewald N (2011) One-pot azidochlorination of glycals. Org Lett 13:545–547

    Google Scholar 

  95. Lemieux RU, Ratcliffe RM (1979) The azidonitration of tri-O-acetyl-d-galactal. Can J Chem 57:1244–1251

    Google Scholar 

  96. Liu M, Barany G, Live D (2005) Parallel solid-phase synthesis of mucin-like glycopeptides. Carbohydr Res 340:2111–2122

    Google Scholar 

  97. Papini AM, Nardi E, Nuti F, Uziel J, Ginanneschi M, Chelli M, Brandi A (2002) Diastereoselective alkylation of schiff bases for the synthesis of lipidic unnatural Fmoc-protected α-amino acids. Eur J Org Chem 16:2736–2741

    Google Scholar 

  98. Biondi L, Filira F, Gobbo M, Scolaro B, Rocchi R, Cavaggion F (1991) Synthesis of glycosylated tuftsins and tuftsin-containing IgG fragment undecapeptide. Int J Pept Prot Res 37:112–121

    Google Scholar 

  99. Satyanarayana J, Gururaja TL, Naganagowda GA, Ramasubbu N, Levine MJ (1998) A concise methodology for the stereoselective synthesis of O-glycosylated amino acid building blocks: complete 1H NMR assignments and their application in solid-phase glycopeptide synthesis. J Pept Res 52:165–179

    Google Scholar 

  100. Kragol G, Otvos LJ (2001) Orthogonal solid-phase synthesis of tetramannosylated peptide constructs carrying three independent branched epitopes. Tetrahedron 57:957–966

    Google Scholar 

  101. Jensen KJ, Meldal M, Bock K (1993) Glycosylation of phenols: preparation of 1,2-cis and 1,2-trans glycosylated tyrosine derivatives to be used in solid-phase glycopeptide synthesis. J Chem Soc Perkin Trans 1 17:2119–2129

    Google Scholar 

  102. Rodriguez RE, Rodriguez FD, Sacristan MP, Torres JL, Valencia G, Garcia Anton JM (1989) New glycosylpeptides with high antinociceptive activity. Neurosci Lett 101:89–94

    Google Scholar 

  103. Bardaji E, Torres JL, Clapes P, Albericio F, Barany G, Valencia G (1990) Solid-phase synthesis of glycopeptidamides under mild conditions: morphiceptin analogs. Angew Chem 102:311–313

    Google Scholar 

  104. Owens NW, Stetefeld J, Lattova’ E, Schweizer F (2010) Contiguous O-galactosylation of 4(R)-hydroxy-l-proline residues forms very stable polyproline II helices. J Am Chem Soc 132:5036–5042

    Google Scholar 

  105. Arsequell G, Shrries N, Valencia G (1995) Synthesis of glycosylated hydroxyproline building blocks. Tetrahedron Lett 36:7323–7326

    Google Scholar 

  106. Arsequell G, Valencia G (1999) Recent advances in the synthesis of complex N-glycopeptides. Tetrahedron-Assymetr 10:3045–3094

    Google Scholar 

  107. Kunz H, Waldman H, Marz J (1989) Synthesis of partial structures of N-glycopeptides representing the linkage regions of the transmembrane neuraminidase of an influenza virus and of factor B of the human complement system. Liebigs Ann Chem 1:45–49

    Google Scholar 

  108. Thiem J, Wiemann T (1990) Combined chemoenzymic structure of N-glycoprotein synthons. Angew Chem 102:78–80

    Google Scholar 

  109. Tropper FD, Andersson FO, Braun S, Roy R (1992) Phase transfer catalysis as a general and stereoselective entry into glycosyl azides from glycosyl halides. Synthesis 7:618–620

    Google Scholar 

  110. Marks GS, Neuberger A (1961) Synthetic studies relating to the carbohydrate–protein linkage in egg albumin. J Chem Soc 4872–4879

    Google Scholar 

  111. Nakabayashi S, Warren CD, Jeanloz RW (1988) The preparation of a partially protected heptasaccharide-asparagine intermediate for glycopeptide synthesis. Carbohydr Res 174:279–289

    Google Scholar 

  112. McDonald FE, Danishefsky SJ (1992) A stereoselective route from glycals to asparagine-linked N-protected glycopeptides. J Org Chem 57:7001–7002

    Google Scholar 

  113. von dem Bruch K, Kunz H (1994) Synthesis of N-glycopeptide clusters with Lewis antigen side chains and their binding of carrier proteins. J Org Chem 33:101–103

    Google Scholar 

  114. Saha UK, Roy R (1995) First synthesis of N-glycopeptoid as new glycopeptidomimetics. Tetrahedron Lett 36:3635–3638

    Google Scholar 

  115. Unverzagt C (1996) Chemoenzymic preparation of a sialylated undecasaccharide—asparagine conjugate. Angew Chem Int Ed Engl 35:2350–2353

    Google Scholar 

  116. Kunz H, Unverzagt C (1988) Protecting group dependant stability of intersaccharide bonds. Synthesis of a fucosyl-chitobiose glucopeptides. Angew Chem 100:1763–1765

    Google Scholar 

  117. Likhosherstov LM, Novikova OS, Derevitskaja VA, Kochetkov NK (1986) A new simple synthesis of amino sugar β-d-glycosylamines. Carbohydr Res 146:1–5

    Google Scholar 

  118. Lubineau A, Auge J, Drouillat B (1995) Improved synthesis of glycosylamines and a straightforward preparation of N-acylglycosylamines as carbohydrate-based detergents. Carbohydr Res 266:211–219

    Google Scholar 

  119. Bejugam M, Flitsch SL (2004) An efficient synthetic route to glycoamino acid building blocks for glycopeptide synthesis. Org Lett 6:4001–4004

    Google Scholar 

  120. Clark RS, Banerjee S, Coward JK (1990) Yeast oligosaccharyltransferase: glycosylation of peptide substrates and chemical characterization of the glycopeptide product. J Org Chem 55:6275–6285

    Google Scholar 

  121. Urge L, Kollat E, Hollosi M, Laczko I, Wroblewski K, Thurin J, Otvos LJ (1991) Solid-phase synthesis of glycopeptides: synthesis of N-α-fluorenylmethoxycarbonyl l-asparagine N-β-glycosides. Tetrahedron Lett 32:3445–3448

    Google Scholar 

  122. Anisfeld ST, Lansbury PT Jr (1990) A convergent approach to the chemical synthesis of asparagine-linked glycopeptides. J Org Chem 55:5560–5562

    Google Scholar 

  123. Cohen-Anisfeld ST, Lansbury PT Jr (1993) A practical, convergent method for glycopeptide synthesis. J Am Chem Soc 115:10531–10537

    Google Scholar 

  124. Casasnovas JM, Larvie M, Stehle T (1999) Crystal structure of two CD46 domains reveals an extended measles virus-binding surface. EMBO J 18:2911–2922

    Google Scholar 

  125. Kihlberg JE, M. (1997) Solid-phase synthesis of glycopeptides: immunological studies with T cell stimulating glycopeptides. Curr Med Chem 4:85–116

    Google Scholar 

  126. Laczko I, Hollosi M, Urge L, Ugen K, Weiner DB, Mantsch HH, Thurin J, Otvos L Jr (1992) Synthesis and conformational studies of N-glycosylated analogues of the HIV- 1 principal neutralizing determinant. Biochemistry 31:4282–4288

    Google Scholar 

  127. Bejugam M, Maltman BA, Flitsch SL (2005) Synthesis of N-linked glycopeptides on solid support and their evaluation as protease substrates. Tetrahedron-Asymmetr 16:21–24

    Google Scholar 

  128. Elliott S, Lorenzini T, Asher S, Aoki K, Brankow D, Buck L, Busse L, Chang D, Fuller J, Grant J, Hernday N, Hokum M, Hu S, Knudten A, Levin N, Komorowski R, Martin F, Navarro R, Osslund T, Rogers G, Rogers N, Trail G, Egrie J (2003) Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol 21:414–421

    Google Scholar 

  129. Bretthauer RK (2003) Genetic engineering of Pichia pastoris to humanize N-glycosylation of proteins. Trends Biotechnol 21:459–462

    Google Scholar 

  130. Ceaglio N, Etcheverrigaray M, Kratje R, Oggero M (2008) Novel long-lasting interferon alpha derivatives designed by glycoengineering. Biochimie 90:437–449

    Google Scholar 

  131. Broddefalk J, Backlund J, Almqvist F, Johansson M, Holmdahl R, Kihlberg J (1998) T cells recognize a glycopeptide derived from type II collagen in a model for rheumatoid arthritis. J Am Chem Soc 120:7676–7683

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rodriguez, M.C., Cudic, M. (2013). Optimization of Physicochemical and Pharmacological Properties of Peptide Drugs by Glycosylation. In: Cudic, P. (eds) Peptide Modifications to Increase Metabolic Stability and Activity. Methods in Molecular Biology, vol 1081. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-652-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-652-8_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-651-1

  • Online ISBN: 978-1-62703-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics