Skip to main content

Synthesis of Side Chain N,N' -Diaminoalkylated Derivatives of Basic Amino Acids for Application in Solid-Phase Peptide Synthesis

  • Protocol
  • First Online:
Peptide Modifications to Increase Metabolic Stability and Activity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1081))

Abstract

Despite the enormous therapeutic potential, the clinical use of peptides has been limited by their poor bioavailability and low stability under physiological conditions. Hence, efforts have been undertaken to alter peptide structure in ways to improve their pharmacological properties. Inspired by the importance of basic amino acids in biological systems and the remarkable versatility displayed by lysine during the synthesis of complex peptide scaffolds, this chapter describes a simple procedure that enables rapid access to protected N,N′-diaminoalkylated basic amino acid building blocks suitable for standard solid-phase peptide synthesis. This procedure allows preparation of symmetrical, as well as unsymmetrical, dialkylated amino acid derivatives that can be further modified, enhancing their synthetic utility. The suitability of the synthesized branched basic amino acid building blocks for use in standard solid-phase peptide synthesis has been demonstrated by synthesis of an indolicidin analog in which the lysine residue was substituted with its synthetic polyamino derivate. The substitution provided indolicidin analog with increase net positive charge, more ordered secondary structure in biological membranes mimicking conditions, and enhanced antibacterial activity without altering hemolytic activity. Taking into consideration the increasing interest for peptides with unusual structural features due to their improved biological properties, the described synthesis of polyfunctional amino acid building blocks is of particular practical value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stevenson CL (2009) Advances in peptide pharmaceuticals. Curr Pharm Biotechnol 10:122–137

    Article  PubMed  CAS  Google Scholar 

  2. Liskamp RMJ, Rijkers DTS, Kruijtzer JAW, Kemmink J (2011) Peptides and proteins as a continuing exciting source of inspiration for peptidomimetics. Chembiochem 12: 1626–1653

    Article  PubMed  CAS  Google Scholar 

  3. Zuckermann RN, Kerr JM, Kent SBH, Moos WH (1992) Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J Am Chem Soc 114:10646–10647

    Article  CAS  Google Scholar 

  4. Fowler SA, Blackwell HE (2009) Structure–function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function. Org Biomol Chem 7:1508–1524

    Article  PubMed  CAS  Google Scholar 

  5. Yoo B, Shin SBY, Huang ML, Kirshenbaum K (2010) Peptoid macrocycles: making the rounds with peptidomimetic oligomers. Chem Eur J 16:5528–5537

    PubMed  CAS  Google Scholar 

  6. Gante J, Krug M, Lauterbach G, Weitzel R, Hiller W (1995) Synthesis and properties of the first all-aza analogue of a biologically active peptide. J Pept Sci 1:201–206

    Article  PubMed  CAS  Google Scholar 

  7. Zega A (2005) Azapeptides as pharmacological agents. Curr Med Chem 12(5):589–597

    PubMed  CAS  Google Scholar 

  8. Boeijen A, Liskamp RMJ (1999) Solid-phase synthesis of oligourea peptidomimetics. Eur J Org Chem 1999:2127–2135

    Google Scholar 

  9. de Jong R, Rijkers DTS, Liskamp RMJ (2002) Automated solid-phase synthesis and structural investigation of β-peptidosulfonamides and β-peptidosulfonamide/β-peptide hybrids: β-peptidosulfonamide and β-peptide foldamers are two of a different kind. Helv Chim Acta 85:4230–4243

    Article  Google Scholar 

  10. Cudic P, Stawikowski M (2007) Pseudopeptide synthesis via Fmoc solid-phase synthetic methodology. Mini Rev Org Chem 4:268–280

    Article  CAS  Google Scholar 

  11. Toniolo C (2004) Peptides incorporating secondary structure inducers and mimetics. In: Goodman M (ed) Synthesis of peptides and peptidomimetics, vol E 22c. Houben-Weyl, Stuttgart, pp 693–835

    Google Scholar 

  12. Katsara M, Tselios T, Deraos S, Deraos G, Matsoukas M-T, Lazoura E, Matsoukas J, Apostolopoulos V (2006) Round and round we go: cyclic peptides in disease. Curr Med Chem 13:2221–2232

    Article  PubMed  CAS  Google Scholar 

  13. Karskela T, Virta P, Lönnberg H (2006) Synthesis of bicyclic peptides. Curr Org Synth 3:283–311

    Article  CAS  Google Scholar 

  14. Gentilucci L, De Marco R, Cerisoli L (2010) Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des 16:3185–3203

    Article  PubMed  CAS  Google Scholar 

  15. Solá RJ, Griebenow K (2010) Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 24:9–21

    Article  PubMed  Google Scholar 

  16. Sebestik J, Niederhafner P, Jezek J (2011) Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 40:301–370

    Article  PubMed  CAS  Google Scholar 

  17. Sadler K, Tam JP (2002) Peptide dendrimers: applications and synthesis. Rev Mol Biotechnol 90:195–229

    Article  CAS  Google Scholar 

  18. Tolle JC, Staples MA, Blout ER (1982) Synthesis of a new type of cyclic peptide: a bicyclic nonapeptide. J Am Chem Soc 104: 6883–6884

    Article  CAS  Google Scholar 

  19. Zhang W, Taylor JW (1996) Efficient solid-phase synthesis of peptides with tripodal side-chain bridges and optimization of the solvent conditions for solid-phase cyclizations. Tetrahedron Lett 37:2173–2176

    Article  CAS  Google Scholar 

  20. Yu C, Taylor JW (1996) A new strategy applied to the synthesis of an [alpha]-helical bicyclic peptide constrained by two overlapping i, i + 7 side-chain bridges of novel design. Tetrahedron Lett 37:1731–1734

    Article  CAS  Google Scholar 

  21. Hahn K, Klis W, Stewart J (1990) Design and synthesis of a peptide having chymotrypsin-like esterase activity. Science 248:1544–1547

    Article  PubMed  CAS  Google Scholar 

  22. Mutter M, Tuchscherer GG, Miller C, Altmann KH, Carey RI, Wyss DF, Labhardt AM, Rivier JE (1992) Template-assembled synthetic proteins with four-helix-bundle topology. Total chemical synthesis and conformational studies. J Am Chem Soc 114:1463–1470

    Article  CAS  Google Scholar 

  23. Fields GB, Prockop DJ (1996) Perspectives on the synthesis and application of triple-helical, collagen-model peptides. Biopolymers 40: 345–357

    Article  PubMed  CAS  Google Scholar 

  24. Fields CG, Mickelson DJ, Drake SL, McCarthy JB, Fields GB (1993) Melanoma cell adhesion and spreading activities of a synthetic 124-residue triple-helical “mini-collagen”. J Biol Chem 268:14153–14160

    PubMed  CAS  Google Scholar 

  25. Grab B, Miles AJ, Furcht LT, Fields GB (1996) Promotion of fibroblast adhesion by triple-helical peptide models of type I collagen-derived sequences. J Biol Chem 271: 12234–12240

    Article  PubMed  CAS  Google Scholar 

  26. Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  PubMed  CAS  Google Scholar 

  27. Findlay B, Zhanel GG, Schweizer F (2010) Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother 54:4049–4058

    Article  PubMed  CAS  Google Scholar 

  28. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    Article  PubMed  CAS  Google Scholar 

  29. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    PubMed  CAS  Google Scholar 

  30. Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an α-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta Biomembr 1414:127–139

    Article  CAS  Google Scholar 

  31. David SA (2001) Towards a rational development of anti-endotoxin agents: novel approaches to sequestration of bacterial endotoxins with small molecules. J Mol Recognit 14(6): 370–387

    Article  PubMed  CAS  Google Scholar 

  32. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. J Biol Chem 276:5836–5840

    Article  PubMed  CAS  Google Scholar 

  33. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97:13003–13008

    Article  PubMed  CAS  Google Scholar 

  34. Patel L, Zaro J, Shen W-C (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24:1977–1992

    Article  PubMed  CAS  Google Scholar 

  35. Pitteloud J-P, Bionda N, Cudic P (2012) Direct access to side chain N,N′-diaminoalkylated derivatives of basic amino acids suitable for solid-phase peptide synthesis. Amino Acids 44(2): 321–333

    Article  PubMed  Google Scholar 

  36. Levadala MK, Banerjee SR, Maresca KP, Babich JW, Zubieta J (2004) Direct reductive alkylation of amino acids: synthesis of bifunctional chelates for nuclear imaging. Synthesis 2004:1759–1766

    Article  Google Scholar 

  37. Bartholoma M, Valliant J, Maresca KP, Babich J, Zubieta J (2009) Single amino acid chelates (SAAC): a strategy for the design of technetium and rhenium radiopharmaceuticals. Chem Commun 493–512

    Google Scholar 

  38. Borch RF, Bernstein MD, Durst HD (1971) Cyanohydridoborate anion as a selective reducing agent. J Am Chem Soc 93:2897–2904

    Article  CAS  Google Scholar 

  39. Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267:4292–4295

    PubMed  CAS  Google Scholar 

  40. Diness F, Beyer J, Meldal M (2004) Synthesis of 3-Boc-(1,3)-oxazinane-protected amino aldehydes from amino acids and their conversion into urea precursors. Novel building blocks for combinatorial synthesis. QSAR Comb Sci 23:130–144

    Article  CAS  Google Scholar 

  41. Reggelin M, Junker B, Heinrich T, Slavik S, Bühle P (2006) Asymmetric synthesis of highly substituted azapolycyclic compounds via 2-alkenyl sulfoximines: potential scaffolds for peptide mimetics. J Am Chem Soc 128: 4023–4034

    Article  PubMed  CAS  Google Scholar 

  42. Boyer JH (1951) Addition of hydrazoic acid to conjugated systems. J Am Chem Soc 73: 5248–5252

    Article  CAS  Google Scholar 

  43. Davies AJ, Donald ASR, Marks RE (1967) The acid-catalysed decomposition of some [small beta]-azido-carbonyl compounds. J Chem Soc C 2109–2112

    Google Scholar 

  44. Vogel AI, Tatchell AR, Furnis BS, Hannaford AJ, Smith PWG (1989) Vogel’s textbook of practical organic chemistry, 5th edn. Pearson Education Limited, Essex

    Google Scholar 

  45. Lundquist JT, Pelletier JC (2001) Improved solid-phase peptide synthesis method utilizing α-azide-protected amino acids. Org Lett 3:781–783

    Article  PubMed  CAS  Google Scholar 

  46. Bräse S, Gil C, Knepper K, Zimmermann V (2005) Organic azides: an exploding diversity of a unique class of compounds. Angew Chem Int Ed 44:5188–5240

    Article  Google Scholar 

  47. Lundquist JT, Pelletier JC (2002) A new tri-orthogonal strategy for peptide cyclization. Org Lett 4:3219–3221

    Article  PubMed  CAS  Google Scholar 

  48. Ariza X, Urpí F, Vilarrasa J (1999) A practical procedure for the preparation of carbamates from azides. Tetrahedron Lett 40:7515–7517

    Article  CAS  Google Scholar 

  49. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Edit 41:2596–2599

    Article  CAS  Google Scholar 

  50. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    Article  PubMed  Google Scholar 

  51. Chang PV, Prescher JA, Sletten EM, Baskin JM, Miller IA, Agard NJ, Lo A, Bertozzi CR (2010) Copper-free click chemistry in living animals. Proc Natl Acad Sci USA 107: 1821–1826

    Article  PubMed  CAS  Google Scholar 

  52. Ning X, Guo J, Wolfert MA, Boons G-J (2008) Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast Huisgen cycloadditions. Angew Chem Int Edit 47:2253–2255

    Article  CAS  Google Scholar 

  53. Lutz J-F (2008) Copper-free azide–alkyne cycloadditions: new insights and perspectives. Angew Chem Int Edit 47:2182–2184

    Article  CAS  Google Scholar 

  54. Nan YH, Park KH, Park Y, Jeon YJ, Kim Y, Park I-S, Hahm K-S, Shin SY (2009) Investigating the effects of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti-inflammatory activity of a Trp-rich antimicrobial peptide indolicidin. FEMS Microbiol Lett 292:134–140

    Article  PubMed  CAS  Google Scholar 

  55. Nan YH, Bang J-K, Shin SY (2009) Design of novel indolicidin-derived antimicrobial peptides with enhanced cell specificity and potent anti-inflammatory activity. Peptides 30:832–838

    Article  PubMed  CAS  Google Scholar 

  56. Lee DL, Powers JPS, Pflegerl K, Vasil ML, Hancock REW, Hodges RS (2004) Effects of single d-amino acid substitutions on disruption of β-sheet structure and hydrophobicity in cyclic 14-residue antimicrobial peptide analogs related to gramicidin S. J Pept Res 63:69–84

    Article  PubMed  CAS  Google Scholar 

  57. Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51:1398–1406

    Article  PubMed  CAS  Google Scholar 

  58. Ando S, Mitsuyasu K, Soeda Y, Hidaka M, Ito Y, Matsubara K, Shindo M, Uchida Y, Aoyagi H (2010) Structure-activity relationship of indolicidin, a Trp-rich antibacterial peptide. J Pept Sci 16:171–177

    PubMed  CAS  Google Scholar 

  59. Sonnichsen FD, Van Eyk JE, Hodges RS, Sykes BD (1992) Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry 31:8790–8798

    Article  PubMed  CAS  Google Scholar 

  60. Roccatano D, Colombo G, Fioroni M, Mark AE (2002) Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study. Proc Natl Acad Sci USA 99:12179–12184

    Article  PubMed  CAS  Google Scholar 

  61. Otvos L (1997) Use of circular dichroism to determine secondary structure of neuropeptides neuropeptide protocols. In: Irvine GB, Williams CH (eds) Methods in molecular biology, vol 73. Humana Press, Clifton, NJ, pp 153–161

    Google Scholar 

  62. Falla TJ, Karunaratne DN, Hancock REW (1996) Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271:19298–19303

    Article  PubMed  CAS  Google Scholar 

  63. Hsu C-H, Chen C, Jou M-L, Lee AY-L, Lin Y-C, Yu Y-P, Huang W-T, Wu S-H (2005) Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 33:4053–4064

    Article  PubMed  CAS  Google Scholar 

  64. Ladokhin AS, Selsted ME, White SH (1999) CD spectra of indolicidin antimicrobial peptides suggest turns, not polyproline helix. Biochemistry 38:12313–12319

    Article  PubMed  CAS  Google Scholar 

  65. Andrushchenko VV, Vogel HJ, Prenner EJ (2006) Solvent-dependent structure of two tryptophan-rich antimicrobial peptides and their analogs studied by FTIR and CD spectroscopy. Biochim Biophys Acta Biomembr 1758:1596–1608

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pitteloud, JP., Bionda, N., Cudic, P. (2013). Synthesis of Side Chain N,N' -Diaminoalkylated Derivatives of Basic Amino Acids for Application in Solid-Phase Peptide Synthesis. In: Cudic, P. (eds) Peptide Modifications to Increase Metabolic Stability and Activity. Methods in Molecular Biology, vol 1081. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-652-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-652-8_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-651-1

  • Online ISBN: 978-1-62703-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics