Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1081))

Abstract

The creation and development of nonnatural peptidomimetics has become an area of increasing significance in bioorganic and chemical biology. A wide range of new peptide mimics with novel structures and functions are urgently needed to be explored in order to identify potential drug candidates and targeted probes, and to study protein functions. AApeptides are a new class of peptide mimics based on chiral PNA backbone. They are resistant to proteolytic degradation and have limitless potential for diversification. They have been found to have a wide variety of biological applications including cellular translocation, disruption of protein–protein interactions, formation of nanostructures, antimicrobial activity, etc. The synthesis of AApeptides is modular and straightforward. In this chapter, methods for the synthesis of AApeptides (including different subclasses) are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu Y-D, Gellman S (2008) Peptidomimetics. Acc Chem Res 41:1231–1232

    Article  PubMed  CAS  Google Scholar 

  2. Tuwalska D, Sienkiewicz J, Liberek B (2008) Synthesis and conformational analysis of methyl 3-amino-2,3-dideoxyhexopyranosiduronic acids, new sugar amino acids, and their diglycotides. Carbohydr Res 343:1142–1152

    Article  PubMed  CAS  Google Scholar 

  3. Risseeuw MD, Mazurek J, van Langenvelde A, van der Marel GA, Overkleeft HS, Overhand M (2007) Synthesis of alkylated sugar amino acids: conformationally restricted L-Xaa-L-Ser/Thr mimics. Org Biomol Chem 5:2311–2314

    Article  PubMed  CAS  Google Scholar 

  4. Horne WS, Johnson LM, Ketas TJ, Klasse PJ, Lu M, Moore JP, Gellman SH (2009) Structural and biological mimicry of protein surface recognition by alpha/beta-peptide foldamers. Proc Natl Acad Sci USA 106: 14751–14756

    Article  PubMed  CAS  Google Scholar 

  5. Horne WS, Gellman SH (2008) Foldamers with heterogeneous backbones. Acc Chem Res 41:1399–1408

    Article  PubMed  CAS  Google Scholar 

  6. Dervan PB (1986) Design of sequence-specific DNA-binding molecules. Science 232: 464–471

    Article  PubMed  CAS  Google Scholar 

  7. Simon RJ, Kania RS, Zuckermann RN, Huebner VD, Jewell DA, Banville S, Ng S, Wang L, Rosenberg S, Marlowe CK et al (1992) Peptoids: a modular approach to drug discovery. Proc Natl Acad Sci USA 89: 9367–9371

    Article  PubMed  CAS  Google Scholar 

  8. Cheng RP, Gellman SH, DeGrado WF (2001) beta-Peptides: from structure to function. Chem Rev 101:3219–3232

    Article  PubMed  CAS  Google Scholar 

  9. Seebach D, Ciceri PE, Overhand M, Jaun B, Rigo D, Oberer L, Hommel U, Amstutz R, Widmer H (1996) Probing the helical secondary structure of short-chain beta-peptides. Helv Chim Acta 79:2043–2066

    Article  CAS  Google Scholar 

  10. Kritzer JA, Stephens OM, Guarracino DA, Reznik SK, Schepartz A (2005) beta-Peptides as inhibitors of protein–protein interactions. Bioorg Med Chem 13:11–16

    Article  PubMed  CAS  Google Scholar 

  11. Kumbhani DJ, Sharma GV, Khuri SF, Kirdar JA (2006) Fascicular conduction disturbances after coronary artery bypass surgery: a review with a meta-analysis of their long-term significance. J Card Surg 21:428–434

    Article  PubMed  Google Scholar 

  12. Arndt HD, Ziemer B, Koert U (2004) Folding propensity of cyclohexylether-delta-peptides. Org Lett 6:3269–3272

    Article  PubMed  CAS  Google Scholar 

  13. Trabocchi A, Guarna F, Guarna A (2005) gamma- and delta-Amino acids: synthetic strategies and relevant applications. Curr Org Chem 9:1127–1153

    Article  CAS  Google Scholar 

  14. Violette A, Petit MC, Rognan D, Monteil H, Guichard G (2005) Oligourea foldamers as antimicrobial peptidomimetics. Biopolymers 80:516

    Google Scholar 

  15. Boeijen A, van Ameijde J, Liskamp RMJ (2001) Solid-phase synthesis of oligourea peptidomimetics employing the Fmoc protection strategy. J Org Chem 66:8454–8462

    Article  PubMed  CAS  Google Scholar 

  16. Lee HJ, Song JW, Choi YS, Park HM, Lee KB (2002) A theoretical study of conformational properties of N-methyl azapeptide derivatives. J Am Chem Soc 124:11881–11893

    Article  PubMed  CAS  Google Scholar 

  17. Graybill TL, Ross MJ, Gauvin BR, Gregory JS, Harris AL, Ator MA, Rinker JM, Dolle RE (1992) Synthesis and evaluation of azapeptide-derived inhibitors of serine and cysteine proteases. Bioorg Med Chem Lett 2: 1375–1380

    Article  CAS  Google Scholar 

  18. Li X, Wu YD, Yang D (2008) Alpha-aminoxy acids: new possibilities from foldamers to anion receptors and channels. Acc Chem Res 41:1428–1438

    Article  PubMed  CAS  Google Scholar 

  19. Nelson JC, Saven JG, Moore JS, Wolynes PG (1997) Solvophobically driven folding of nonbiological oligomers. Science 277:1793–1796

    Article  PubMed  CAS  Google Scholar 

  20. Patch JA, Barron AE (2002) Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr Opin Chem Biol 6:872–877

    Article  PubMed  CAS  Google Scholar 

  21. Gellman S (2009) Structure and function in peptidic foldamers. Biopolymers 92:293

    Article  Google Scholar 

  22. Goodman CM, Choi S, Shandler S, DeGrado WF (2007) Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol 3:252–262

    Article  PubMed  CAS  Google Scholar 

  23. Niu Y, Padhee S, Wu H, Bai G, Harrington L, Burda WN, Shaw LN, Cao C, Cai J (2011) Identification of gamma-AApeptides with potent and broad-spectrum antimicrobial activity. Chem Commun (Camb) 47: 12197–12199

    Article  CAS  Google Scholar 

  24. Niu Y, Jones AJ, Wu H, Varani G, Cai J (2011) gamma-AApeptides bind to RNA by mimicking RNA-binding proteins. Org Biomol Chem 9:6604–6609

    Article  PubMed  CAS  Google Scholar 

  25. Padhee S, Hu Y, Niu Y, Bai G, Wu H, Costanza F, West L, Harrington L, Shaw LN, Cao C, Cai J (2011) Non-hemolytic alpha-AApeptides as antimicrobial peptidomimetics. Chem Commun (Camb) 47:9729–9731

    Article  CAS  Google Scholar 

  26. Niu Y, Hu Y, Li X, Chen J, Cai J (2011) [gamma]-AApeptides: design, synthesis and evaluation. New J Chem 35:542–545

    Article  CAS  Google Scholar 

  27. Niu Y, Padhee S, Wu H, Bai G, Qiao Q, Hu Y, Harrington L, Burda WN, Shaw LN, Cao C, Cai J (2012) Lipo-gamma-AApeptides as a new class of potent and broad-spectrum antimicrobial agents. J Med Chem 55: 4003–4009

    Article  PubMed  CAS  Google Scholar 

  28. Bai G, Padhee S, Niu Y, Wang RE, Qiao Q, Buzzeo R, Cao C, Cai J (2012) Cellular uptake of an alpha-AApeptide. Org Biomol Chem 10:1149–1153

    Article  PubMed  CAS  Google Scholar 

  29. Niu Y, Bai G, Wu H, Wang RE, Qiao Q, Padhee S, Buzzeo R, Cao C, Cai J (2012) Cellular translocation of a gamma-AApeptide mimetic of Tat peptide. Mol Pharm 9:1529–1534

    Google Scholar 

  30. Hu Y, Li X, Sebti SM, Chen J, Cai J (2011) Design and synthesis of AApeptides: a new class of peptide mimics. Bioorg Med Chem Lett 21:1469–1471

    Article  PubMed  CAS  Google Scholar 

  31. Niu Y, Wu H, Huang R, Qiao Q, Constanza F, Wang X, Hu Y, Amin MN, Naguyen A, Zhang J, Haller E, Ma S, Li X, Cai J (2012) Nanorods formed from a new class of peptidomimetics. Macromolecules. doi:10.1021/ma3015992

    Google Scholar 

  32. Hu Y, Amin MN, Padhee S, Wang R, Qiao Q, Ge B, Li Y, Mathew A, Cao C, Cai J (2012) Lipidated peptidomimetics with improved antimicrobial activity. ACS Med Chem Lett 3:683–686

    Article  CAS  Google Scholar 

  33. Wu H, Niu Y, Padhee S, Wang RE, Li Y, Qiao Q, Ge B, Cao C, Cai J (2012) Design and synthesis of unprecedented cyclic gamma-AApeptides for antimicrobial development. Chem Sci 3:2570–2575

    Article  CAS  Google Scholar 

  34. Debaene F, Da Silva JA, Pianowski Z, Duran FJ, Winssinger N (2007) Expanding the scope of PNA-encoded libraries: divergent synthesis of libraries targeting cysteine, serine and metallo-proteases as well as tyrosine phosphatases. Tetrahedron 63: 6577–6586

    Article  CAS  Google Scholar 

  35. Debaene F, Mejias L, Harris JL, Winssinger N (2004) Synthesis of a PNA-encoded cysteine protease inhibitor library. Tetrahedron 60:8677–8690

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Niu, Y., Hu, Y., Wu, H., Cai, J. (2013). Synthesis of AApeptides. In: Cudic, P. (eds) Peptide Modifications to Increase Metabolic Stability and Activity. Methods in Molecular Biology, vol 1081. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-652-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-652-8_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-651-1

  • Online ISBN: 978-1-62703-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics