Skip to main content

Metastatic Determinants: Breast Tumour Cells in Circulation

  • Chapter
  • First Online:
Cell and Molecular Biology of Breast Cancer
  • 2363 Accesses

Abstract

More than 90 % of deaths from breast cancer are a result of metastases, rather than the primary tumour. In recent years it has become possible to study the occult steps of metastasis that have previously been clinically undetectable—single tumour cells that have disseminated early on from the primary tumour and are en route to distant sites. High-resolution genomic and gene analyses of these rare cells show that they carry their own unique sets of aberrations and are frequently quite different from the primary tumours they originated from. They appear to be heterogeneous and in a transitional state, expressing genes necessary to allow them passage into the circulation as well as genes required to see them through survival or dormancy in blood vessels and metastatic niches such as the bone marrow and lymph nodes. They possess gene signatures ranging from up-regulation of genes associated with invasiveness and dormancy to expression of favourable growth factor receptors that facilitate extravasation and survival at secondary sites. Circulating tumour cells (CTCs) in the blood and disseminated tumour cells (DTCs) in the bone marrow have been reported to have strong prognostic relevance by predicting survival and relapse in both early and late stages of breast cancer. They are emerging as promising biomarkers for monitoring the response to treatment, whereby a drop in cell numbers is suggestive of a positive response, but persisting cells indicate resistance and a poor prognosis. It is apparent that not just the primary and metastatic tumours need to be targeted, but also the intermediate cells in transition that do not necessarily reflect the genetics of the tumour they originated from or the metastasis they may eventually give rise to. As more disseminated cell markers are being consecutively added to a growing panel, the heterogeneous nature of breast cancer is becoming more evident, paving the way for a systemic approach to experimental design and treatment regimens. Molecular characterization of single disseminated cells in the bloodstream will help address many of the questions surrounding the development of breast cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8:329–40.

    Article  PubMed  CAS  Google Scholar 

  2. Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med. 2008;359:2814–23.

    Article  PubMed  CAS  Google Scholar 

  3. Kim M-Y, et al. Tumor self-seeding by circulating cancer cells. Cell. 2009;139:1315–26.

    Article  PubMed  Google Scholar 

  4. Ashworth TR. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J. 1869;14:146–7.

    Google Scholar 

  5. Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer. 2004;4:448–56.

    Article  PubMed  CAS  Google Scholar 

  6. Chambers AF, Groom AC, MacDonald IC. Metastasis: dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–72.

    Article  PubMed  CAS  Google Scholar 

  7. Krishnamurthy S, et al. Detection of minimal residual disease in blood and bone marrow in early stage breast cancer. Cancer. 2010;116:3330–7.

    Article  PubMed  Google Scholar 

  8. Flores LM, et al. Improving the yield of circulating tumour cells facilitates molecular characterisation and recognition of discordant HER2 amplification in breast cancer. Br J Cancer. 2010;102:1495–502.

    Article  PubMed  CAS  Google Scholar 

  9. Stott SL, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA. 2010;107:18392–7.

    Article  PubMed  CAS  Google Scholar 

  10. Nagrath S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–9.

    Article  PubMed  CAS  Google Scholar 

  11. Van der Auwera I, et al. Circulating tumour cell detection: a direct comparison between the cell search system, the AdnaTest and CK-19/mammaglobin RT-PCR in patients with metastatic breast cancer. Br J Cancer. 2010;102:276–84.

    Article  PubMed  Google Scholar 

  12. Giordano A, Cristofanilli M. CTCs in metastatic breast cancer. Recent Results Cancer Res. 2012;195:193–201.

    Article  PubMed  Google Scholar 

  13. Andreopoulou E, et al. Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: AdnaGen AdnaTest BreastCancer Select/DetectTM versus Veridex Cell SearchTM system. Int J Cancer. 2012;130:1590–7.

    Article  PubMed  CAS  Google Scholar 

  14. Lucci A, et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 2012;13:688–95.

    Article  PubMed  Google Scholar 

  15. Farace F, et al. A direct comparison of Cell Search and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br J Cancer. 2011;105:847–53.

    Article  PubMed  CAS  Google Scholar 

  16. Kraan J, et al. External quality assurance of circulating tumor cell enumeration using the Cell Search® system: a feasibility study. Cytometry B Clin Cytom. 2011;80:112–8.

    PubMed  Google Scholar 

  17. Aktas B, et al. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009;11:R46.

    Article  PubMed  Google Scholar 

  18. Kasimir-Bauer S, Hoffmann O, Wallwiener D, Kimmig R, Fehm T. Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res. 2012;14:R15.

    Article  PubMed  CAS  Google Scholar 

  19. Iakovlev VV, Goswami RS, Vecchiarelli J, Arneson NCR, Done SJ. Quantitative detection of circulating epithelial cells by Q-RT-PCR. Breast Cancer Res Treat. 2007;107:145–54.

    Article  PubMed  Google Scholar 

  20. van de Vijver MJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  21. Schmidt-Kittler O, et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA. 2003;100:7737–42.

    Article  PubMed  CAS  Google Scholar 

  22. Schardt JA, et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell. 2005;8:227–39.

    Article  PubMed  CAS  Google Scholar 

  23. Woelfle U, et al. Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res. 2003;63:5679–84.

    PubMed  CAS  Google Scholar 

  24. Hüsemann Y, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13:58–68.

    Article  PubMed  Google Scholar 

  25. Weigelt B, Peterse JL, van’t Veer L. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.

    Article  PubMed  CAS  Google Scholar 

  26. Wikman H, Vessella R, Pantel K. Cancer micrometastasis and tumour dormancy. APMIS. 2008;116:754–70.

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt H. Asynchronous growth of prostate cancer is reflected by circulating tumor cells delivered from distinct, even small foci, harboring loss of heterozygosity of the PTEN gene. Cancer Res. 2006;66:8959–65.

    Article  PubMed  CAS  Google Scholar 

  28. Russnes HG, Navin N, Hicks J, Borresen-Dale A-L. Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Invest. 2011;121:3810–8.

    Article  PubMed  CAS  Google Scholar 

  29. Shah SP, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature. 2009;461:809–13.

    Article  PubMed  CAS  Google Scholar 

  30. Ding L, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 2010;464:999–1005.

    Article  PubMed  CAS  Google Scholar 

  31. Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9:302–12.

    Article  PubMed  CAS  Google Scholar 

  32. Stoecklein NH, Klein CA. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer. 2010;126:589–98.

    Article  PubMed  CAS  Google Scholar 

  33. Klein CA, et al. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet. 2002;360:683–9.

    Article  PubMed  CAS  Google Scholar 

  34. Mathiesen RR, et al. High-resolution analyses of copy number changes in disseminated tumor cells of patients with breast cancer. Int J Cancer. 2012;131:E405–15.

    Article  PubMed  CAS  Google Scholar 

  35. Gradilone A, et al. Circulating tumor cells (CTCs) in metastatic breast cancer (MBC): prognosis, drug resistance and phenotypic characterization. Ann Oncol. 2011;22:86–92.

    Article  PubMed  CAS  Google Scholar 

  36. Klein CA, Stoecklein NH. Lessons from an aggressive cancer: evolutionary dynamics in esophageal carcinoma. Cancer Res. 2009;69:5285–8.

    Article  PubMed  CAS  Google Scholar 

  37. Lu J, et al. Isolation of circulating epithelial and tumor progenitor cells with an invasive phenotype from breast cancer patients. Int J Cancer. 2010;126:669–83.

    Article  PubMed  CAS  Google Scholar 

  38. Schwarzenbach H, et al. Comparative evaluation of cell-free tumor DNA in blood and disseminated tumor cells in bone marrow of patients with primary breast cancer. Breast Cancer Res. 2009;11:R71.

    Article  PubMed  Google Scholar 

  39. Smirnov DA, et al. Global gene expression profiling of circulating tumor cells. Cancer Res. 2005;65:4993–7.

    Article  PubMed  CAS  Google Scholar 

  40. Cawthorn TR, et al. Mechanisms and pathways of bone metastasis: challenges and pitfalls of performing molecular research on patient samples. Clin Exp Metastasis. 2009;26:935–43.

    Article  PubMed  CAS  Google Scholar 

  41. Kanwar N, Done S. Circulating tumour cells: implications and methods of detection. In: Done S, editor. Breast cancer—recent advances in biology, imaging and therapeutics. Rijeka: InTech Publishers; 2011. http://www.intechopen.com/books/breast-cancer-recent-advances-in-biology-imaging-and-therapeutics/circulating-tumour-cells-implications-and-methods-of-detection.

  42. Yie S, et al. Detection of survivin-expressing circulating cancer cells (CCCs) in peripheral blood of patients with gastric and colorectal cancer reveals high risks of relapse. Ann Surg Oncol. 2008;15:3073–82.

    Article  PubMed  Google Scholar 

  43. Padua D, et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133:66–77.

    Article  PubMed  CAS  Google Scholar 

  44. Beroukhim R, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.

    Article  PubMed  CAS  Google Scholar 

  45. Zijlstra A, Lewis J, DeGryse B, Stuhlmann H, Quigley JP. The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell. 2008;13:221–34.

    Article  PubMed  CAS  Google Scholar 

  46. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92.

    Article  PubMed  CAS  Google Scholar 

  47. Abdelkarim M, et al. Invading basement membrane matrix is sufficient for MDA-MB-231 breast cancer cells to develop a stable in vivo metastatic phenotype. PLoS One. 2011;6:e23334.

    Article  PubMed  CAS  Google Scholar 

  48. Khamis ZI, Sahab ZJ, Sang Q-XA. Active roles of tumor stroma in breast cancer metastasis. Int J Breast Cancer. 2012;2012:1–10.

    Article  Google Scholar 

  49. Finak G, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14:518–27.

    Article  PubMed  CAS  Google Scholar 

  50. Harris L, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.

    Article  PubMed  CAS  Google Scholar 

  51. Braun S, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005;353:793–802.

    Article  PubMed  CAS  Google Scholar 

  52. Cristofanilli M, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–91.

    Article  PubMed  CAS  Google Scholar 

  53. Cristofanilli M, et al. Circulating tumor cells in metastatic breast cancer: biologic staging beyond tumor burden. Clin Breast Cancer. 2007;7:471–9.

    Article  PubMed  Google Scholar 

  54. Bidard F-C, et al. Prognosis of women with stage IV breast cancer depends on detection of circulating tumor cells rather than disseminated tumor cells. Ann Oncol. 2008;19:496–500.

    Article  PubMed  Google Scholar 

  55. Nelson NJ. Circulating tumor cells: will they be clinically useful? J Natl Cancer Inst. 2010;102:146–8.

    Article  PubMed  Google Scholar 

  56. Liu MC, et al. Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer. J Clin Oncol. 2009;27:5153–9.

    Article  PubMed  Google Scholar 

  57. Ignatiadis M, et al. Prognostic value of the molecular detection of circulating tumor cells using a multimarker reverse transcription-PCR assay for cytokeratin 19, mammaglobin A, and HER2 in early breast cancer. Clin Cancer Res. 2008;14:2593–600.

    Article  PubMed  CAS  Google Scholar 

  58. Pachmann K, et al. Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. J Clin Oncol. 2008;26:1208–15.

    Article  PubMed  Google Scholar 

  59. Xenidis N, et al. Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J Clin Oncol. 2009;27:2177–84.

    Article  PubMed  CAS  Google Scholar 

  60. Janni W, et al. Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse—a European pooled analysis. Clin Cancer Res. 2011;17:2967–76.

    Article  PubMed  Google Scholar 

  61. Maheswaran S, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359:366–77.

    Article  PubMed  CAS  Google Scholar 

  62. Sayagués JM, et al. Intratumoural cytogenetic heterogeneity of sporadic colorectal carcinomas suggests several pathways to liver metastasis. J Pathol. 2010;221:308–19.

    Article  PubMed  Google Scholar 

  63. Navin N, et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 2010;20:68–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Done .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanwar, N., Done, S.J. (2013). Metastatic Determinants: Breast Tumour Cells in Circulation. In: Schatten, H. (eds) Cell and Molecular Biology of Breast Cancer. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-634-4_10

Download citation

Publish with us

Policies and ethics