Skip to main content

Purification of Protein Complexes and Characterization of Protein-Protein Interactions

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1062))

Abstract

In plants and all other multicellular organisms, both the intra- and extracellular environments are filled with dynamic biomolecular interactions that control many biological processes. Most of these interactions are biochemical in nature and often exist between proteins. For instance, many protein-protein interactions assist in sustained cellular homeostasis but also allow for rapid intracellular communication in response to stimuli. Thus, the discovery and validation of protein-protein interactions, and the consequent formation of protein complexes, is an integral and essential component of plant biology research. The ability to efficiently and accurately determine existing protein networks is necessary to further our understanding of plant biology. However, discovering protein networks represents a challenge for both present and future researchers. Here we have outlined several straightforward methods aimed at first discovering protein-protein interactions and then characterizing them utilizing additional approaches. We first describe methods for rate-zonal centrifugation, in vitro binding assays, and co-immunoprecipitation experiments in the context of discovering novel protein-protein interactions. Next, we discuss methods for characterizing and validating these interactions using alternative approaches: yeast two-hybrid, in vitro pull-down assays, and bimolecular fluorescence complementation (BiFC). Obviously each of these methods need not be performed in parallel; rather our goal was to describe several approaches, some of which may be more appropriate for increasingly specialized laboratory environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Consortium, A. I. M (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333:601–607

    Article  Google Scholar 

  2. Lee CB, Swatek KN, McClure B (2008) Pollen proteins bind to the C-terminal domain of Nicotiana alata pistil arabinogalactan proteins. J Biol Chem 283:26965–26973

    Article  PubMed  CAS  Google Scholar 

  3. Rudolph R, Lilie H (1996) In vitro folding of inclusion body proteins. FASEB J 10:49–56

    PubMed  CAS  Google Scholar 

  4. Paul AL, Liu L, McClung S, Laughner B, Chen S, Ferl RJ (2009) Comparative interactomics: analysis of arabidopsis 14-3-3 complexes reveals highly conserved 14-3-3 interactions between humans and plants. J Proteome Res 8:1913–1924

    Article  PubMed  CAS  Google Scholar 

  5. Lee C, Chronis D, Kenning C, Peret B, Hewezi T, Davis EL, Baum TJ, Hussey R, Bennett M, Mitchum MG (2011) The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiol 155:866–880

    Article  PubMed  CAS  Google Scholar 

  6. Thelen JJ, Miernyk JA, Randall DD (1998) Partial purification and characterization of the maize mitochondrial pyruvate dehydrogenase complex. Plant Physiol 116:1443–1450

    Article  PubMed  CAS  Google Scholar 

  7. Swatek KN, Graham K, Agrawal GK, Thelen JJ (2011) The 14-3-3 isoforms chi and epsilon differentially bind client proteins from developing arabidopsis seed. J Proteome Res 10:4076–4087

    Article  PubMed  CAS  Google Scholar 

  8. Citovsky V, Lee LY, Vyas S, Glick E, Chen MH, Vainstein A, Gafni Y, Gelvin SB, Tzfira T (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362:1120–1131

    Article  PubMed  CAS  Google Scholar 

  9. Ren L, Emery D, Kaboord B, Chang E, Qoronfleh MW (2003) Improved immunomatrix methods to detect protein:protein interactions. J Biochem Biophys Methods 57:143–157

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Swatek, K.N., Lee, C.B., Thelen, J.J. (2014). Purification of Protein Complexes and Characterization of Protein-Protein Interactions. In: Sanchez-Serrano, J., Salinas, J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 1062. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-580-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-580-4_32

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-579-8

  • Online ISBN: 978-1-62703-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics