Skip to main content

Live Imaging of Arabidopsis Development

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1062))

Abstract

Live cell imaging is an essential methodology for studying the structure, dynamics, and functions of cells in a living plant under normal or stressed growth conditions. Arabidopsis thaliana is perfectly amenable to various live microscopy techniques. In this chapter, we provide guidelines to design live-imaging experiments. We discuss specifically the respective advantage of each microscopy technique, the choice of reporter, and the preparation of the sample. Detailed protocols for imaging of shoot and roots are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069

    Article  PubMed  CAS  Google Scholar 

  2. Maizel A, von Wangenheim D, Federici F et al (2011) High resolution, live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–385

    Article  PubMed  CAS  Google Scholar 

  3. Sena G, Frentz Z, Birnbaum KD, Leibler S (2011) Quantitation of cellular dynamics in growing Arabidopsis roots with light sheet microscopy. PLoS One 6:e21303

    Article  PubMed  CAS  Google Scholar 

  4. Chen T, Wang X, Wangenheim von D et al (2011) Probing and tracking organelles in living plant cells. Protoplasma doi: 10.1007/s00709-011-0364-4

  5. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  PubMed  CAS  Google Scholar 

  6. Berg RH, Beachy RN (2008) Fluorescent protein applications in plants. Methods Cell Biol 85:153–177

    Article  PubMed  CAS  Google Scholar 

  7. Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci U S A 97:3718–3723

    Article  PubMed  CAS  Google Scholar 

  8. Geldner N, Dénervaud-Tendon V, Hyman DL et al (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178

    Article  PubMed  CAS  Google Scholar 

  9. Chapman S, Faulkner C, Kaiserli E et al (2008) The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci U S A 105:20038–20043

    Article  PubMed  CAS  Google Scholar 

  10. Haseloff J, Siemering KR (2006) The uses of green fluorescent protein in plants. Methods Biochem Anal 47:259–284

    PubMed  Google Scholar 

  11. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  PubMed  CAS  Google Scholar 

  12. Heisler MG, Ohno C, Das P et al (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911

    Article  PubMed  CAS  Google Scholar 

  13. Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant J 45:651–683

    Article  PubMed  CAS  Google Scholar 

  14. Grefen C, Donald N, Schumacher K, Blatt MR (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J 64:355–365

    Article  PubMed  CAS  Google Scholar 

  15. Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant gateway vectors. Plant Physiol 145:1144–1154

    Article  PubMed  CAS  Google Scholar 

  16. Ulker B, Li Y, Rosso MG, Logemann E et al (2008) T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat Biotechnol 26:1015–1017

    Article  PubMed  Google Scholar 

  17. Huang LC, Kohashi C, Vangundy R, Murashige T (1995) Effects of common components on hardness of culture media prepared with gelrite™. Vitro Cell Dev Biol Plant 31:84–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

von Wangenheim, D., Daum, G., Lohmann, J.U., Stelzer, E.K., Maizel, A. (2014). Live Imaging of Arabidopsis Development. In: Sanchez-Serrano, J., Salinas, J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 1062. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-580-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-580-4_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-579-8

  • Online ISBN: 978-1-62703-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics