Skip to main content

Immobilization of Candida rugosa Lipase on Superparamagnetic Fe3O4 Nanoparticles for Biocatalysis in Low-Water Media

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1051))

Abstract

A simple immobilization method for Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles is described. The Fe3O4 nanoparticles were coated with PEI and Candida rugosa lipase was adsorbed on these particles via electrostatic interactions. The immobilization resulted in marginal simultaneous purification. However, the immobilized preparation showed 110× higher transesterification activity in low-water media. It was also efficient in kinetic resolution of (±)-1-phenylethanol with eep of 99 % and E = 412 within 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reukov V, Maximov V, Vertegel A (2010) Proteins conjugated to poly(butyl cyanoacrylate) nanoparticles as potential neuroprotective agents. Biotechnol Bioeng 108:243–252

    Article  Google Scholar 

  2. Ren Y, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol 11:63–70

    Article  PubMed  CAS  Google Scholar 

  3. Safarik I, Pospiskova K, Horska K, Safarikova M (2012) Potential of magnetically responsive (nano)biocomposites. Soft Matter 8:5407–5413

    Article  CAS  Google Scholar 

  4. Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20:2472–2477

    Article  PubMed  CAS  Google Scholar 

  5. Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646

    Article  PubMed  CAS  Google Scholar 

  6. Safarik I, Safarikaova M (2004) Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol 2:7–24

    Article  PubMed  Google Scholar 

  7. Safarik I, Safarikova M (2009) Magnetic nano- and microparticles in biotechnology. Chem Papers 63:497–505

    Article  CAS  Google Scholar 

  8. Wu W, He Q, Chiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  PubMed  CAS  Google Scholar 

  9. Gupta MN, Kaloti M, Kapoor M, Solanki K (2011) Nanomaterials as matrices for enzyme immobilization. Artif Cells Blood Substit Immobil Biotechnol 39:98–108

    Article  PubMed  CAS  Google Scholar 

  10. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman M, Cowman M, Gross RA (2003) Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685

    Article  PubMed  CAS  Google Scholar 

  11. Gardimalla HMR, Mandal D, Stevens PD, Yen M, Gao Y (2005) Superparamagnetic nanoparticle-supported enzymatic resolution of racemic carboxylates. Chem Commun 35:4432–4434

    Article  Google Scholar 

  12. Huang S-H, Liao M-H, Chen D-H (2003) Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog 19:1095–1100

    Article  PubMed  CAS  Google Scholar 

  13. Bai S, Guo Z, Liu W, Sun Y (2006) Resolution of (±)-menthol by immobilized Candida rugosa lipase on superparamagnetic nanoparticles. Food Chem 96:1–7

    Article  CAS  Google Scholar 

  14. Solanki K, Gupta MN (2011) Simultaneous purification and immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for catalyzing transesterification reactions. New J Chem 35:2551–2556

    Article  CAS  Google Scholar 

  15. Mattiasson B, Adlercreutz P (1991) Tailoring the microenvironment of enzymes in water-poor systems. Trends Biotechnol 9:394–398

    Article  PubMed  CAS  Google Scholar 

  16. Gupta MN (1992) Enzyme function in organic solvents. Eur J Biochem 203:25–32

    Article  PubMed  CAS  Google Scholar 

  17. Halling PJ (2000) Biocatalysis in low-water media: understanding effects of reaction conditions. Curr Opin Chem Biol 4:74–80

    Article  PubMed  CAS  Google Scholar 

  18. Adlercreutz P (2006) Immobilization of enzymes for use in organic media. In: Guisan JM (ed) Immobilization of enzymes and cells. Methods in Biotechnology, vol 2. Humana Press, Towota, NJ, pp 25-256

    Google Scholar 

  19. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Tech 40:1451–1463

    Article  CAS  Google Scholar 

  20. Palomo JM, Munoz G, Fernandez-Lorente G, Mateo C, Fernandez-Lafuente R, Guisan JM (2002) Interfacial adsorption of lipases on very hydrophobic support (Octadecyl-Sephabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J Mol Catal B: Enzym 19–20:279–286

    Article  Google Scholar 

  21. De Maria PD, Sanchez-Montero JM, Sinisterra JV, Alcantara AR (2006) Understanding Candida rugosa lipases: an overview. Biotechnol Adv 24:180–196

    Article  Google Scholar 

  22. Ganesan A, Price NC, Kelly SM, Petry I, Moore BD, Halling PJ (2006) Circular dichroism studies of subtilisin Carlsberg immobilized on micron sized silica particles. Biochim Biophys Acta 1764:1119–1125

    Article  PubMed  CAS  Google Scholar 

  23. Ganesan A, Moore BD, Kelly SM, Price NC, Rolinski OJ, Birch DJS, Dunkin IR, Halling PJ (2009) Optical spectroscopic methods for probing the conformational stability of immobilised enzymes. Chemphyschem 10:1492–1499

    Article  PubMed  CAS  Google Scholar 

  24. Solanki K, Gupta MN, Halling PJ (2012) Examining structure–activity correlations of some high activity enzyme preparations for low water media. Bioresour Technol 115:147–151

    Article  PubMed  CAS  Google Scholar 

  25. Hudson EP, Eppler RK, Clark DS (2005) Biocatalysis in semi-aqueous and nearly anhydrous conditions. Curr Opin Biotechnol 16:637–643

    Article  PubMed  CAS  Google Scholar 

  26. Majumder AB, Shah S, Gupta MN (2007) Enantioselective transacetylation of (R, S)-β-citronellol by propanol rinsed immobilized Rhizomucor miehei lipase. Chem Cent J 1:10–14

    Article  PubMed  Google Scholar 

  27. Shah S, Gupta MN (2007) Kinetic resolution of (±)-1-Phenylethanol in [Bmim][PF6] using high activity preparations of lipases. Bioorg Med Chem Lett 17:921–924

    Article  PubMed  CAS  Google Scholar 

  28. Schöfer SH, Kaftzik N, Wasserscheid P, Kragl U (2001) Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity. Chem Commun 425–426

    Google Scholar 

  29. Lozano P, Diego TD, Larnicol M, Vaultier M, Iborra JL (2006) Chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol in ionic liquids and ionic liquids/supercritical carbon dioxide systems. Biotechnol Lett 28:1559–1565

    Article  PubMed  CAS  Google Scholar 

  30. Jain P, Jain S, Gupta MN (2005) A microwave assisted microassay for lipase. Anal Bioanal Chem 381:1480–1482

    Article  PubMed  CAS  Google Scholar 

  31. Chiang C-L, Sung C-S, Wu T-F, Chen C-Y, Hsu C-Y (2005) Application of superparamagnetic nanoparticles in purification of plasmid DNA from bacterial cells. J Chromatogr B 822:54–60

    Article  CAS  Google Scholar 

  32. Shah S, Gupta MN (2008) The effect of ultrasonic pre-treatment on the catalytic activity of lipases in aqueous and non-aqueous media. Chem Cent J 2:1–5

    Article  PubMed  Google Scholar 

  33. Chen C-S, Fujimoto Y, Girdalukas G, Sih CJ (1982) Quantitative analysis of biochemical kinetic resolution of enantiomers. J Am Chem Soc 104:7294–7299

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Department of Science and Technology (DST-SERB) [Grant No.: SR/SO/BB-68/2010], the Department of Biotechnology (DBT) [Grant Number: BT/PR14158/NNT/28/484/2010], and Council for Scientific and Industrial Research (CSIR), all Government of India organizations, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Mukherjee, J., Solanki, K., Gupta, M.N. (2013). Immobilization of Candida rugosa Lipase on Superparamagnetic Fe3O4 Nanoparticles for Biocatalysis in Low-Water Media. In: Guisan, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 1051. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-550-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-550-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-549-1

  • Online ISBN: 978-1-62703-550-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics