Skip to main content

Synthesis of Cyclic Disulfide-Rich Peptides

  • Protocol
  • First Online:
Peptide Synthesis and Applications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1047))

Abstract

In this chapter we describe two SPPS approaches for producing cyclic disulfide-rich peptides in our laboratory, including cyclotides from plants, cyclic conotoxins from cone snail venoms, chlorotoxin from scorpion venom, and the sunflower trypsin inhibitor peptide, SFTI-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336

    Article  PubMed  CAS  Google Scholar 

  2. Ireland DC, Wang CKL, Wilson JA, Gustafson KR, Craik DJ (2008) Cyclotides as natural anti-HIV agents. Biopolymers 90:51–60

    Article  PubMed  CAS  Google Scholar 

  3. Henriques ST, Craik DJ (2010) Cyclotides as templates in drug design. Drug Discov Today 15:57–64

    Article  PubMed  CAS  Google Scholar 

  4. Garcia AE, Camarero JA (2010) Biological activities of natural and engineered cyclotides, a novel molecular scaffold for peptide-based therapeutics. Curr Mol Pharmacol 3:153–163

    PubMed  CAS  Google Scholar 

  5. Burman R, Herrmann A, Tran R, Kivela JE, Lomize A, Gullbo J, Goransson U (2011) Cytotoxic potency of small macrocyclic knot proteins: structure-activity and mechanistic studies of native and chemically modified cyclotides. Org Biomol Chem 9:4306–4314

    Article  PubMed  CAS  Google Scholar 

  6. Craik DJ (2009) Circling the enemy: cyclic proteins in plant defence. Trends Plant Sci 14:328–335

    Article  PubMed  CAS  Google Scholar 

  7. Rosengren KJ, Daly NL, Plan MR, Waine C, Craik DJ (2003) Twists, knots, and rings in proteins – structural definition of the cyclotide framework. J Biol Chem 278:8606–8616

    Article  PubMed  CAS  Google Scholar 

  8. Heitz A, Hernandez JF, Gagnon J, Hong TT, Pham TT, Nguyen TM, Le-Nguyen D, Chiche L (2001) Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins. Biochemistry 40:7973–7983

    Article  PubMed  CAS  Google Scholar 

  9. Felizmenio-Quimio ME, Daly NL, Craik DJ (2001) Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. J Mol Biol 276:22875–22882

    CAS  Google Scholar 

  10. Hernandez JF, Gagnon J, Chiche L, Nguyen TM, Andrieu JP, Heitz A, Trinh Hong T, Pham TT, Le Nguyen D (2000) Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39:5722–5730

    Article  PubMed  CAS  Google Scholar 

  11. Craik DJ (2006) Chemistry - Seamless proteins tie up their loose ends. Science 311:1563–1564

    Article  PubMed  Google Scholar 

  12. Chan LY, Gunasekera S, Henriques ST, Worth NF, Le SJ, Clark RJ, Campbell JH, Craik DJ, Daly NL (2011) Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood 118:6709–6717

    Article  PubMed  CAS  Google Scholar 

  13. Clark RJ, Fischer H, Dempster L, Daly NL, Rosengren KJ, Nevin ST, Meunier FA, Adams DJ, Craik DJ (2005) Engineering stable peptide toxins by means of backbone cyclization: stabilization of the alpha-conotoxin MII. Proc Natl Acad Sci U S A 102:13767–13772

    Article  PubMed  CAS  Google Scholar 

  14. Craik DJ, Daly NL, Waine C (2001) The cystine knot motif in toxins and implications for drug design. Toxicon 39:43–60

    Article  PubMed  CAS  Google Scholar 

  15. Clark RJ, Jensen J, Nevin ST, Callaghan BP, Adams DJ, Craik DJ (2010) The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew Chem Int Ed 49:6545–6548

    Article  CAS  Google Scholar 

  16. Akcan M, Stroud MR, Hansen SJ, Clark RJ, Daly NL, Craik DJ, Olson JM (2011) Chemical re-engineering of chlorotoxin improves bioconjugation properties for tumor imaging and targeted therapy. J Med Chem 54:782–787

    Article  PubMed  CAS  Google Scholar 

  17. DeBin JA, Maggio JE, Strichartz GR (1993) Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol 264:C361–C369

    PubMed  CAS  Google Scholar 

  18. Lyons SA, O’Neal J, Sontheimer H (2002) Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39:162–173

    Article  PubMed  Google Scholar 

  19. Ferdani R, Zheleznyak A, Jacoby DB, Sentissi A, Sherman C, Anderson CJ (2009) 64Cu labeled chlorotoxin as a potential imaging agent for glioma. J Labelled Comp Radiopharm 52:S35

    Google Scholar 

  20. Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M, Hackman RC, Ravanpay AC, Stroud MR, Kusuma Y, Hansen SJ, Kwok D, Munoz NM, Sze RW, Grady WM, Greenberg NM, Ellenbogen RG, Olson JM (2007) Tumor paint: a chlorotoxin: Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res 67:6882–6888

    Article  PubMed  CAS  Google Scholar 

  21. Sun CR, Du K, Fang C, Bhattarai N, Veiseh O, Kievit F, Stephen Z, Lee DH, Ellenbogen RG, Ratner B, Zhang MQ (2010) PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. ACS Nano 4:2402–2410

    Article  PubMed  CAS  Google Scholar 

  22. Kievit FM, Veiseh O, Fang C, Bhattarai N, Lee D, Ellenbogen RG, Zhang MQ (2010) Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 4:4587–4594

    Article  PubMed  CAS  Google Scholar 

  23. Veiseh O, Kievit FM, Gunn JW, Ratner BD, Zhang MQ (2009) A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials 30:649–657

    Article  PubMed  CAS  Google Scholar 

  24. Merrifield RB (1963) Solid phase peptide synthesis. 1. Synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  25. Nishiuchi Y, Kumagaye K, Noda Y, Watanabe TX, Sakakibara S (1986) Synthesis and secondary structure determination of omega-conotoxin GVIA - A 27-peptide with 3 intramolecular disulfide bonds. Biopolymers 25:S61–S68

    Article  PubMed  CAS  Google Scholar 

  26. Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci U S A 96:10068–10073

    Article  PubMed  CAS  Google Scholar 

  27. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  PubMed  CAS  Google Scholar 

  28. Clark RJ, Craik DJ (2010) Native chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins. Biopolymers 94:414–422

    Article  PubMed  CAS  Google Scholar 

  29. Gunasekera S, Foley FM, Clark RJ, Sando L, Fabri LJ, Craik DJ, Daly NL (2008) Engineering stabilized vascular endothelial growth factor-A antagonists: synthesis, structural characterization, and bioactivity of grafted analogues of cyclotides. J Med Chem 51:7697–7704

    Article  PubMed  CAS  Google Scholar 

  30. Blanco-Canosa JB, Dawson PE (2008) An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew Chem Int Ed 47:6851–6855

    Article  CAS  Google Scholar 

  31. Schnölzer M, Alewood P, Jones A, Alewood D, SBH K (2007) In situ neutralization in Boc-chemistry solid phase peptide synthesis: rapid, high yield assembly of difficult sequences. Int J Pept Res Ther 13:31–44

    Article  Google Scholar 

Download references

Acknowledgements

D.J.C. is a NHMRC Professorial Fellow. Research in our group on cyclic peptides is supported by the Australian Research Council (ARC) and the National Health and Medical Research Council (NHMRC).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Akcan, M., Craik, D.J. (2013). Synthesis of Cyclic Disulfide-Rich Peptides. In: Jensen, K., Tofteng Shelton, P., Pedersen, S. (eds) Peptide Synthesis and Applications. Methods in Molecular Biology, vol 1047. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-544-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-544-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-543-9

  • Online ISBN: 978-1-62703-544-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics