Skip to main content

In Vitro Microtubule Severing Assays

  • Protocol
  • First Online:
Adhesion Protein Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1046))

Abstract

Microtubules are rigid and highly dynamic cellular polymers essential for intracellular transport, cell division and differentiation. Their stability is tightly regulated by a vast array of cellular factors. In vitro microtubule assays have proven to be powerful tools for deciphering the mechanism of microtubule dynamics regulators such as molecular motors and microtubule associated proteins. In this chapter we focus on microtubule severing enzymes that use the energy of ATP hydrolysis to introduce internal breaks in the microtubule lattice. We present a detailed protocol for a light microscopy based in vitro microtubule severing assay that was instrumental in the identification and characterization of these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  PubMed  CAS  Google Scholar 

  2. Howard J, Hyman AA (2007) Microtubule polymerases and depolymerases. Curr Opin Cell Biol 19:31–35

    Article  PubMed  CAS  Google Scholar 

  3. Roll-Mecak A, McNally FJ (2010) Microtubule-severing enzymes. Curr Opin Cell Biol 22:96–103

    Article  PubMed  CAS  Google Scholar 

  4. Sharp DJ, Ross JL (2012) Microtubule-severing enzymes at the cutting edge. J Cell Sci 125:2561–2569

    Article  PubMed  CAS  Google Scholar 

  5. Vale RD (1991) Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts. Cell 64:827–839

    Article  PubMed  CAS  Google Scholar 

  6. McNally FJ, Vale RD (1993) Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75:419–429

    Article  PubMed  CAS  Google Scholar 

  7. Roll-Mecak A, Vale RD (2005) The Drosophila homologue of the hereditary spastic paraplegia protein, spastin, severs and disassembles microtubules. Curr Biol 15:650–655

    Article  PubMed  CAS  Google Scholar 

  8. Evans KJ, Gomes ER, Reisenweber SM, Gundersen GG, Lauring BP (2005) Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. J Cell Biol 168:599–606

    Article  PubMed  CAS  Google Scholar 

  9. Zhang D, Rogers GC, Buster DW, Sharp DJ (2007) Three microtubule severing enzymes contribute to the “Pacman-flux” machinery that moves chromosomes. J Cell Biol 177:231–242

    Article  PubMed  CAS  Google Scholar 

  10. Mukherjee S, Diaz Valencia JD, Stewman S, Metz J, Monnier S, Rath U, Asenjo AB, Charafeddine RA, Sosa HJ, Ross JL, Ma A, Sharp DJ (2012) Human Fidgetin is a microtubule severing the enzyme and minus-end depolymerase that regulates mitosis. Cell Cycle 11:2359–2366

    Article  PubMed  CAS  Google Scholar 

  11. Sonbuchner TM, Rath U, Sharp DJ (2010) KL1 is a novel microtubule severing enzyme that regulates mitotic spindle architecture. Cell Cycle 9:2403–2411

    Article  PubMed  CAS  Google Scholar 

  12. Mains PE, Kemphues KJ, Sprunger SA, Sulston IA, Wood WB (1990) Mutations affecting the meiotic and mitotic divisions of the early Caenorhabditis elegans embryo. Genetics 126:593–605

    PubMed  CAS  Google Scholar 

  13. Clark-Maguire S, Mains PE (1994) mei-1, a gene required for meiotic spindle formation in Caenorhabditis elegans, is a member of a family of ATPases. Genetics 136:533–546

    PubMed  CAS  Google Scholar 

  14. McNally K, Audhya A, Oegema K, McNally FJ (2006) Katanin controls mitotic and meiotic spindle length. J Cell Biol 175:881–891

    Article  PubMed  CAS  Google Scholar 

  15. Loughlin R, Wilbur JD, McNally FJ, Nedelec FJ, Heald R (2011) Katanin contributes to interspecies spindle length scaling in Xenopus. Cell 147:1397–1407

    Article  PubMed  CAS  Google Scholar 

  16. Sharma N, Bryant J, Wloga D, Donaldson R, Davis R, Jerka-Dziadosz M, Gaertig J (2007) Katanin regulates dynamics of microtubules and biogenesis of motile cilia. J Cell Biol 178:1065–1079

    Article  PubMed  CAS  Google Scholar 

  17. Dymek EE, Smith EF (2012) PF19 encodes the p60 catalytic subunit of katanin and is required for assembly of the flagellar central apparatus in Chlamydomonas. J Cell Sci 125:3357–3366

    Article  PubMed  CAS  Google Scholar 

  18. Ahmad FJ, Yu W, McNally FJ, Baas PW (1999) An essential role for katanin in severing microtubules in the neuron. J Cell Biol 145:305–315

    Article  PubMed  CAS  Google Scholar 

  19. Lee HH, Jan LY, Jan YN (2009) Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. Proc Natl Acad Sci U S A 106:6363–6368

    Article  PubMed  CAS  Google Scholar 

  20. Stewart A, Tsubouchi A, Rolls MM, Tracey WD, Tang Sherwood N (2012) Katanin p60-like1 promotes microtubule growth and terminal dendrite stability in the larval class IV sensory neurons of Drosophila. J Neurosci 32:11631–11642

    Article  PubMed  CAS  Google Scholar 

  21. Wood JD, Landers JA, Bingley M, McDermott CJ, Thomas-McArthur V, Gleadall LJ, Shaw PJ, Cunliffe VT (2006) The microtubule-severing protein Spastin is essential for axon outgrowth in the zebrafish embryo. Hum Mol Genet 15:2763–2771

    Article  PubMed  CAS  Google Scholar 

  22. Sherwood N, Sun Q, Xue M, Zhang B, Zinn K (2004) Drosophila Spastin regulates synaptic microtubule networks and is required for normal motor function. PLoS Biol 2:e429

    Article  PubMed  Google Scholar 

  23. Stone MC, Rao K, Gheres KW, Kim S, Tao J, La Rochelle C, Folker CT, Sherwood NT, Rolls MM (2012) Normal Spastin gene dosage is specifically required for axon regeneration. Cell Rep 2:1340–1350

    Article  PubMed  CAS  Google Scholar 

  24. Hartman JJ, Mahr J, McNally K, Okawa K, Iwamatsu A, Thomas S, Cheesman S, Heuser J, Vale RD, McNally FJ (1998) Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93:277–287

    Article  PubMed  CAS  Google Scholar 

  25. Roll-Mecak A, Vale RD (2008) Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451:363–367

    Article  PubMed  CAS  Google Scholar 

  26. Gell C, Bormuth V, Brouhard GJ, Cohen DN, Diez S, Friel CT, Helenius J, Nitzsche B, Petzold H, Ribbe J, Schaffer E, Stear JH, Trushko A, Varga V, Widlund PO, Zanic M, Howard J (2010) Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol 95:221–245

    Article  PubMed  CAS  Google Scholar 

  27. McNally KP, Buster D, McNally FJ (2002) Katanin-mediated microtubule severing can be regulated by multiple mechanisms. Cell Motil Cytoskeleton 53:337–349

    Article  PubMed  CAS  Google Scholar 

  28. Yu W, Qiang L, Solowska JM, Karabay A, Korulu S, Baas PW (2008) The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol Biol Cell 19:1485–1498

    Article  PubMed  CAS  Google Scholar 

  29. Sudo H, Baas PW (2011) Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases. Hum Mol Genet 20:763–778

    Article  PubMed  CAS  Google Scholar 

  30. Lacroix B, van Dijk J, Gold ND, Guizetti J, Aldrian-Herrada G, Rogowski K, Gerlich DW, Janke C (2010) Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J Cell Biol 189:945–954

    Article  PubMed  CAS  Google Scholar 

  31. Diaz-Valencia JD, Morelli MM, Bailey M, Zhang D, Sharp DJ, Ross JL (2011) Drosophila katanin-60 depolymerizes and severs at microtubule defects. Biophys J 100:2440–2449

    Google Scholar 

  32. McNally FJ, Thomas S (1998) Katanin is responsible for the M-phase microtubule-severing activity in Xenopus eggs. Mol Biol Cell 9:1847–1861

    Article  PubMed  CAS  Google Scholar 

  33. Vigers GP, Coue M, McIntosh JR (1988) Fluorescent microtubules break up under illumination. J Cell Biol 107:1011–1024

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A. Roll-Mecak is supported by the National Institutes of Health Intramural Program. N. E. Ziółkowska is supported by a Searle Scholar Award to A. Roll-Mecak.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ziółkowska, N.E., Roll-Mecak, A. (2013). In Vitro Microtubule Severing Assays. In: Coutts, A. (eds) Adhesion Protein Protocols. Methods in Molecular Biology, vol 1046. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-538-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-538-5_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-537-8

  • Online ISBN: 978-1-62703-538-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics