Skip to main content

Comparative Genomic Hybridization (CGH) in Genotoxicology

  • Protocol
  • First Online:
Genotoxicity Assessment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1044))

  • 2581 Accesses

Abstract

In the past two decades comparative genomic hybridization (CGH) and array CGH have become crucial and indispensable tools in clinical diagnostics. Initially developed for the genome-wide screening of chromosomal imbalances in tumor cells, CGH as well as array CGH have also been employed in genotoxicology and most recently in toxicogenomics. The latter methodology allows a multi-endpoint analysis of how genes and proteins react to toxic agents revealing molecular mechanisms of toxicology. This chapter provides a background on the use of CGH and array CGH in the context of genotoxicology as well as a protocol for conventional CGH to understand the basic principles of CGH. Array CGH is still cost intensive and requires suitable analytical algorithms but might become the dominating assay in the future when more companies provide a large variety of different commercial DNA arrays/chips leading to lower costs for array CGH equipment as well as consumables such as DNA chips. As the amount of data generated with microarrays exponentially grows, the demand for powerful adaptive algorithms for analysis, competent databases, as well as a sound regulatory framework will also increase. Nevertheless, chromosomal and array CGH are being demonstrated to be effective tools for investigating copy number changes/variations in the whole genome, DNA expression patterns, as well as loss of heterozygosity after a genotoxic impact. This will lead to new insights into affected genes and the underlying structures of regulatory and signaling pathways in genotoxicology and could conclusively identify yet unknown harmful toxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high–sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A 83:2934–2938

    Article  PubMed  CAS  Google Scholar 

  2. Heng HH, Squire J, Tsui LC (1992) High–resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc Natl Acad Sci U S A 89:9509–9513

    Article  PubMed  CAS  Google Scholar 

  3. Speicher MR, Gwyn BS, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi–fluor FISH. Nat Genet 12:368–375

    Article  PubMed  CAS  Google Scholar 

  4. Schröck E, du Manoir S, Veldman T et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497

    Article  PubMed  Google Scholar 

  5. Tanke HJ, Wiegant J, van Gijlswijk RP et al (1999) New strategy for multi–colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur J Hum Genet 7:2–11

    Article  PubMed  CAS  Google Scholar 

  6. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  7. Bolzer A, Kreth G, Solovei I et al (2005) Three–dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157

    Article  PubMed  Google Scholar 

  8. Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6:782–792

    Article  PubMed  CAS  Google Scholar 

  9. Kallioniemi A, Kallioniemi OP, Sudar D et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  PubMed  CAS  Google Scholar 

  10. du Manoir S, Speicher MR, Joos S et al (1993) Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 90:590–610

    Article  PubMed  Google Scholar 

  11. Kallioniemi OP, Kallioniemi A, Sudar D et al (1993) Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol 4:41–46

    PubMed  CAS  Google Scholar 

  12. Zitzelsberger H, Lehmann L, Werner M et al (1997) Comparative genomic hybridisation for the analysis of chromosomal imbalances in solid tumours and haematological malignancies. Histochem Cell Biol 108:403–417

    Article  PubMed  CAS  Google Scholar 

  13. Corso C, Parry EM (1999) The application of comparative genomic hybridization and fluorescence in situ hybridization to the characterization of genotoxicity screening tester strains AHH-1 and MCL-5. Mutagenesis 14:417–426

    Article  PubMed  CAS  Google Scholar 

  14. Carlson KM, Gruber A, Liliemark E et al (1999) Characterization of drug-resistant cell lines by comparative genomic hybridization. Cancer Genet Cytogenet 111:32–36

    Article  PubMed  CAS  Google Scholar 

  15. Corso C, Parry JM (2004) Comparative genomic hybridization analysis of N-methyl-N′-nitrosoguanidine-induced rat gastrointestinal tumors discloses a cytogenetic fingerprint. Environ Mol Mutagen 43:20–27

    Article  PubMed  CAS  Google Scholar 

  16. Payne J, Jones C, Lakhani S et al (2000) Improving the reproducibility of the MCF-7 cell proliferation assay for the detection of xenoestrogens. Sci Total Environ 248:51–62

    Article  PubMed  CAS  Google Scholar 

  17. Kim YM, Yang S, Xu W et al (2008) Continuous in vitro exposure to low-dose genistein induces genomic instability in breast epithelial cells. Cancer Genet Cytogenet 186:78–84

    Article  PubMed  CAS  Google Scholar 

  18. Wong N, Lai P, Pang E et al (2000) Genomic aberrations in human hepatocellular carcinomas of differing etiologies. Clin Cancer Res 6:4000–4009

    PubMed  CAS  Google Scholar 

  19. Clarke PA, te Poele R, Wooster R et al (2001) Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem Pharmacol 62:1311–1336

    Article  PubMed  CAS  Google Scholar 

  20. Solinas-Toldo S, Lampel S, Stilgenbauer S et al (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:399–407

    Article  PubMed  CAS  Google Scholar 

  21. Ylstra B, van den Ijssel P, Carvalho B et al (2006) BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH). Nucleic Acids Res 34:445–450

    Article  PubMed  CAS  Google Scholar 

  22. Brennan C, Zhang Y, Leo C et al (2004) High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res 64:4744–4748

    Article  PubMed  CAS  Google Scholar 

  23. Chan VSW, Theilade MD (2005) The use of toxicogenomic data in risk assessment: a regulatory perspective. Clin Toxicol (Phila) 43:121–126

    CAS  Google Scholar 

  24. Amin RP, Hamadeh HK, Bushel PR et al (2002) Genomic interrogation of mechanism(s) underlying cellular responses to toxicants. Toxicology 181–182:555–563

    Article  PubMed  Google Scholar 

  25. Gerhold D, Lu M, Xu J et al (2001) Monitoring expression of genes involved in drug metabolism and toxicology using DNA microarrays. Physiol Genomics 5:161–170

    PubMed  CAS  Google Scholar 

  26. Aradhya S, Lewis R, Bonaga T et al (2012) Exon-level array CGH in a large clinical cohort demonstrates increased sensitivity of diagnostic testing for Mendelian disorders. Genet Med 14:594–603

    Article  PubMed  CAS  Google Scholar 

  27. Wang J, Zhan H, Li F-Y et al (2012) Targeted array CGH as a valuable molecular diagnostic approach: experience in the diagnosis of mitochondrial and metabolic disorders. Mol Genet Metab 106:221–230

    Article  PubMed  CAS  Google Scholar 

  28. Hu DG, Webb G, Hussey N (2004) Aneuploidy detection in single cells using DNA array-based comparative genomic hybridization. Mol Hum Reprod 10:283–289

    Article  PubMed  CAS  Google Scholar 

  29. Fiegler H, Geigl JB, Langer S et al (2007) High resolution array-CGH analysis of single cells. Nucleic Acids Res 35:e15

    Article  PubMed  Google Scholar 

  30. Cheng J, Vanneste E, Konings P et al (2011) Single-cell copy number variation detection. Genome Biol 12:R80

    Article  PubMed  CAS  Google Scholar 

  31. Crotwell PL, Hoyme HE (2012) Advances in whole-genome genetic testing: from chromosomes to microarrays. Curr Probl Pediatr Adolesc Health Care 42:47–73

    Article  PubMed  Google Scholar 

  32. Zhao X, Li C, Paez JG et al (2004) An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res 64:3060–3071

    Article  PubMed  CAS  Google Scholar 

  33. Auer H, Newsom DL, Nowak NJ et al (2007) Gene-resolution analysis of DNA copy number variation using oligonucleotide expression microarrays. BMC Genomics 8:111

    Article  PubMed  Google Scholar 

  34. Le Scouarnec S, Gribble SM (2012) Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics. Heredity (Edinb) 108:75–85

    Article  Google Scholar 

  35. Schillert A, Ziegler A (2012) Genotype calling for the Affymetrix platform. Methods Mol Biol 850:513–523

    Article  PubMed  Google Scholar 

  36. Hester SD, Reid L, Nowak N et al (2009) Comparison of comparative genomic hybridization technologies across microarray platforms. J Biomol Tech 20:135–151

    PubMed  Google Scholar 

  37. Herzog CR, Desai D, Amin S (2006) Array CGH analysis reveals chromosomal aberrations in mouse lung adenocarcinomas induced by the human lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Biochem Biophys Res Commun 341:856–863

    Article  PubMed  CAS  Google Scholar 

  38. Wilkerson PM, Dedes KJ, Wetterskog D et al (2011) Functional characterization of EMSY gene amplification in human cancers. J Pathol 225:29–42

    Article  PubMed  CAS  Google Scholar 

  39. Soucek K, Gajdusková P, Brázdová M et al (2010) Fetal colon cell line FHC exhibits tumorigenic phenotype, complex karyotype, and TP53 gene mutation. Cancer Genet Cytogenet 197:107–116

    Article  PubMed  CAS  Google Scholar 

  40. Medlin JF (1999) Timely toxicology. Environ Health Perspect 107:A256–A258

    Article  PubMed  CAS  Google Scholar 

  41. Heinloth AN, Shackelford RE, Innes CL et al (2003) ATM-dependent and -independent gene expression changes in response to oxidative stress, gamma irradiation, and UV irradiation. Radiat Res 160:273–290

    Article  PubMed  CAS  Google Scholar 

  42. Heinloth AN, Shackelford RE, Innes CL et al (2003) Identification of distinct and common gene expression changes after oxidative stress and gamma and ultraviolet radiation. Mol Carcinog 37:65–82

    Article  PubMed  CAS  Google Scholar 

  43. Annereau JP, Szakács G, Tucker CJ et al (2004) Analysis of ATP-binding cassette transporter expression in drug-selected cell lines by a microarray dedicated to multidrug resistance. Mol Pharmacol 66:1397–1405

    Article  PubMed  CAS  Google Scholar 

  44. Castagnola P, Malacarne D, Scaruffi P et al (2011) Chromosomal aberrations and aneuploidy in oral potentially malignant lesions: distinctive features for tongue. BMC Cancer 11:445

    Article  PubMed  CAS  Google Scholar 

  45. Fujimoto J, Kadara H, Men T et al (2010) Comparative functional genomics analysis of NNK tobacco-carcinogen induced lung adenocarcinoma development in Gprc5a-knockout mice. PLoS One 5:e11847

    Article  PubMed  Google Scholar 

  46. Auerbach SS, Shah RR, Mav D et al (2010) Predicting the hepatocarcinogenic potential of alkenylbenzene flavoring agents using toxicogenomics and machine learning. Toxicol Appl Pharmacol 243:300–314

    Article  PubMed  CAS  Google Scholar 

  47. Iwahashi H, Kitagawa E, Suzuki Y et al (2007) Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray. BMC Genomics 8:95

    Article  PubMed  Google Scholar 

  48. Huang Y, Fernandez SV, Goodwin S et al (2007) Epithelial to mesenchymal transition in human breast epithelial cells transformed by 17beta-estradiol. Cancer Res 67:11147–11157

    Article  PubMed  CAS  Google Scholar 

  49. Milan M, Coppe A, Reinhardt R et al (2011) Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: genomic tools for environmental monitoring. BMC Genomics 12:234

    Article  PubMed  CAS  Google Scholar 

  50. Guha S, Li Y, Neuberg D (2008) Bayesian hidden markov modeling of array CGH data. J Am Stat Assoc 103:485–497

    Article  PubMed  CAS  Google Scholar 

  51. Shah SP, Xuan X, DeLeeuw RJ et al (2006) Integrating copy number polymorphisms into array CGH analysis using a robust HMM. Bioinformatics 22:e431–e439

    Article  PubMed  CAS  Google Scholar 

  52. OECD (2009) Series on testing and assessment no. 100 – Report of the second survey on available omics tools (ENV/JM/MONO(2008)35). Available at http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono%282008%2935&doclanguage=en

  53. Mahadevan B, Snyder RD, Waters MD et al (2011) Genetic toxicology in the 21st century: reflections and future directions. Environ Mol Mutagen 52:339–354

    Article  PubMed  CAS  Google Scholar 

  54. Aardema MJ, MacGregor JT (2002) Toxicology and genetic toxicology in the new era of ‘toxicogenomics’: impact of ‘-omics’ technologies. Mutat Res 499:13–25

    Article  PubMed  CAS  Google Scholar 

  55. Vrana KE, Freeman WM, Aschner M (2003) Use of microarray technologies in toxicology research. Neurotoxicology 24:321–332

    Article  PubMed  CAS  Google Scholar 

  56. Ge F, He QY (2009) Genomic and proteomic approaches for predicting toxicity and adverse drug reactions. Expert Opin Drug Metab Toxicol 5:29–37

    Article  PubMed  CAS  Google Scholar 

  57. Mattingly CJ, Rosenstein MC, Davis AP et al (2006) The comparative toxicogenomics database: a cross-species resource for building chemical–gene interaction networks. Toxicol Sci 92:587–595

    Article  PubMed  CAS  Google Scholar 

  58. Davis AP, King BL, Mockus S et al (2011) The comparative toxicogenomics database: update 2011. Nucleic Acids Res 39:D1067–D1072

    Article  PubMed  CAS  Google Scholar 

  59. Young RR (2002) Genetic toxicology: web resources. Toxicology 173:103–121

    Article  PubMed  CAS  Google Scholar 

  60. Jacobs A (2009) An FDA perspective on the nonclinical use of the X-Omics technologies and the safety of new drugs. Toxicol Lett 186:32–35

    Article  PubMed  CAS  Google Scholar 

  61. Nuwaysir EF, Bittner M, Trent J et al (1999) Microarrays and toxicology: the advent of toxicogenomics. Mol Carcinog 24:153–159

    Article  PubMed  CAS  Google Scholar 

  62. Committee on Toxicity Testing and Assessment of Environmental Agents, National Research Council (2007) Toxicity testing in the 21st century: a vision and a strategy. The National Academies Press, Washington, DC

    Google Scholar 

  63. Andersen ME, Al-Zoughool M, Croteau M et al (2010) The future of toxicity testing. J Toxicol Environ Health B Crit Rev 13:163–196

    Article  PubMed  CAS  Google Scholar 

  64. Krewski D, Westphal M, Al-Zoughool M et al (2011) New directions in toxicity testing. Annu Rev Public Health 32:161–178

    Article  PubMed  Google Scholar 

  65. Bhattacharya S, Zhang Q, Carmichael PL et al (2011) Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One 6:e20887

    Article  PubMed  CAS  Google Scholar 

  66. Gatzidou ET, Zira AN, Theocharis SE (2007) Toxicogenomics: a pivotal piece in the puzzle of toxicological research. J Appl Toxicol 27:302–309

    Article  PubMed  CAS  Google Scholar 

  67. Harrill AH, Rusyn I (2008) Systems biology and functional genomics approaches for the identification of cellular responses to drug toxicity. Expert Opin Drug Metab Toxicol 4:1379–1389

    Article  PubMed  CAS  Google Scholar 

  68. Zhang Q, Bhattacharya S, Andersen ME et al (2010) Computational systems biology and dose–response modeling in relation to new directions in toxicity testing. J Toxicol Environ Health B Crit Rev 13:253–276

    Article  PubMed  CAS  Google Scholar 

  69. Grant GR, Manduchi E, Stoeckert CJ Jr (2007) Analysis and management of microarray gene expression data. Curr Protoc Mol Biol 19:Unit 19.6

    PubMed  Google Scholar 

  70. Vermeesch JR, Melotte C, Froyen G et al (2005) Molecular karyotyping: array CGH quality criteria for constitutional genetic diagnosis. J Histochem Cytochem 53:413–422

    Article  PubMed  CAS  Google Scholar 

  71. Shaw-Smith C, Redon R, Rickman L et al (2004) Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41:241–248

    Article  PubMed  CAS  Google Scholar 

  72. Brazma A (2009) Minimum Information About a Microarray Experiment (MIAME)-successes, failures, challenges. Scientific World Journal 9:420–423

    Article  PubMed  CAS  Google Scholar 

  73. Taylor RC, Acquaah-Mensah G, Singhal M et al (2008) Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress. PLoS Comput Biol 4:e1000166

    Article  PubMed  Google Scholar 

  74. Telenius H, Carter NP, Bebb CE et al (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725

    Article  PubMed  CAS  Google Scholar 

  75. Zhang L, Cui X, Schmitt K et al (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A 89:5847–5851

    Article  PubMed  CAS  Google Scholar 

  76. du Manoir S, Kallioniemi OP, Lichter P et al (1995) Hardware and software requirements for quantitative analysis of comparative genomic hybridization. Cytometry 19:4–9

    Article  PubMed  Google Scholar 

  77. du Manoir S, Schröck E, Bentz M et al (1995) Quantitative analysis of comparative genomic hybridization. Cytometry 19:27–41

    Article  PubMed  Google Scholar 

  78. Piper J, Rutovitz D, Sudar D et al (1995) Computer image analysis of comparative genomic hybridization. Cytometry 19:10–26

    Article  PubMed  CAS  Google Scholar 

  79. Lundsteen C, Maahr J, Christensen B et al (1995) Image analysis in comparative genomic hybridization. Cytometry 19:42–50

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Baumgartner, A. (2013). Comparative Genomic Hybridization (CGH) in Genotoxicology. In: Dhawan, A., Bajpayee, M. (eds) Genotoxicity Assessment. Methods in Molecular Biology, vol 1044. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-529-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-529-3_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-528-6

  • Online ISBN: 978-1-62703-529-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics