Skip to main content

Considering Discrete Protein Pools when Measuring the Dynamics of Nuclear Membrane Proteins

  • Protocol
  • First Online:
Imaging Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1042))

Abstract

Measuring dynamics of nuclear proteins is complicated by the fact that many DNA- and chromatin-binding proteins have separate nucleoplasmic and nuclear membrane pools with distinct mobilities. Moreover, when measuring recoveries in FRAP experiments, it is important to be aware that the continuous transport of new protein through the nuclear pore complexes means that fluorescence recovery comes from both dynamic exchange of protein already within the nucleus and newly imported protein. Here we describe fluorescence recovery after photobleaching and photoactivation techniques designed to track nuclear membrane proteins and some methods we have developed that may help to distinguish these various pools. A combination of these approaches with standard FRAP approaches is necessary to understand the true dynamics of nuclear proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ER Endoplasmic reticulum FRAP:

Fluorescence recovery after photobleaching

INM Inner nuclear membrane NE:

Nuclear envelope

NET:

Nuclear envelope transmembrane protein

NPC:

Nuclear pore complex ONM Outer nuclear membrane

ROI:

Region of interest

References

  1. Drings P, Sonnemann E (1974) [Phytohemagglutinin-induced increase of euchromatin contents in human lymphocytes]. Res Exp Med (Berl) 164:63–76

    Article  CAS  Google Scholar 

  2. Hirschhorn R, Decsy MI, Troll W (1971) The effect of PHA stimulation of human peripheral blood lymphocytes upon cellular content of euchromatin and heterochromatin. Cell Immunol 2:696–701

    Article  PubMed  CAS  Google Scholar 

  3. Brown CR, Kennedy CJ, Delmar VA, Forbes DJ, Silver PA (2008) Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev 22:627–639

    Article  PubMed  CAS  Google Scholar 

  4. Makatsori D, Kourmouli N, Polioudaki H, Shultz LD, McLean K et al (2004) The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J Biol Chem 279:25567–25573

    Article  PubMed  CAS  Google Scholar 

  5. Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M et al (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38:1005–1014

    Article  PubMed  CAS  Google Scholar 

  6. Pindyurin AV, Moorman C, de Wit E, Belyakin SN, Belyaeva ES et al (2007) SUUR joins separate subsets of PcG, HP1 and B-type lamin targets in Drosophila. J Cell Sci 120:2344–2351

    Article  PubMed  CAS  Google Scholar 

  7. Somech R, Shaklai S, Geller O, Amariglio N, Simon AJ et al (2005) The nuclear-envelope protein and transcriptional repressor LAP2beta interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylation. J Cell Sci 118:4017–4025

    Article  PubMed  CAS  Google Scholar 

  8. Furukawa K (1999) LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2- chromatin interaction. J Cell Sci 112:2485–2492

    PubMed  CAS  Google Scholar 

  9. Polioudaki H, Kourmouli N, Drosou V, Bakou A, Theodoropoulos PA et al (2001) Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein 1. EMBO Rep 2:920–925

    Article  PubMed  CAS  Google Scholar 

  10. Ye Q, Worman HJ (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 271:14653–14656

    Article  PubMed  CAS  Google Scholar 

  11. Ivorra C, Kubicek M, Gonzalez JM, Sanz-Gonzalez SM, Alvarez-Barrientos A et al (2006) A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev 20:307–320

    Article  PubMed  CAS  Google Scholar 

  12. Osada S, Ohmori SY, Taira M (2003) XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development 130:1783–1794

    Article  PubMed  CAS  Google Scholar 

  13. Ozaki T, Saijo M, Murakami K, Enomoto H, Taya Y et al (1994) Complex formation between lamin A and the retinoblastoma gene product: identification of the domain on lamin A required for its interaction. Oncogene 9:2649–2653

    PubMed  CAS  Google Scholar 

  14. Pan D, Estevez-Salmeron LD, Stroschein SL, Zhu X, He J et al (2005) The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 280:15992–16001

    Article  PubMed  CAS  Google Scholar 

  15. Korfali N, Wilkie GS, Swanson SK, Srsen V, Batrakou DG et al (2010) The leukocyte nuclear envelope proteome varies with cell activation and contains novel transmembrane proteins that affect genome architecture. Mol Cell Proteomics 9:2571–2585

    Article  PubMed  CAS  Google Scholar 

  16. Schirmer EC, Florens L, Guan T, Yates JR, Gerace L (2003) Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301:1380–1382

    Article  PubMed  CAS  Google Scholar 

  17. Wilkie GS, Korfali N, Swanson SK, Malik P, Srsen V et al (2011) Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations. Mol Cell Proteomics 10(M110):003129

    PubMed  Google Scholar 

  18. Ohba T, Schirmer EC, Nishimoto T, Gerace L (2004) Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore. J Cell Biol 167:1051–1062

    Article  PubMed  CAS  Google Scholar 

  19. Soullam B, Worman HJ (1995) Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane. J Cell Biol 130:15–27

    Article  PubMed  CAS  Google Scholar 

  20. Zuleger N, Kelly DA, Richardson AC, Kerr AR, Goldberg MW et al (2011) System analysis shows distinct mechanisms and common principles of nuclear envelope protein dynamics. J Cell Biol 193:109–123

    Article  PubMed  CAS  Google Scholar 

  21. Meinema AC, Laba JK, Hapsari RA, Otten R, Mulder FA et al (2011) Long unfolded linkers facilitate membrane protein import through the nuclear pore complex. Science 333:90–93

    Article  PubMed  CAS  Google Scholar 

  22. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    Article  PubMed  CAS  Google Scholar 

  23. Phair RD, Misteli T (2001) Kinetic modelling approaches to in vivo imaging. Nat Rev Mol Cell Biol 2:898–907

    Article  PubMed  CAS  Google Scholar 

  24. Lorenz H, Hailey DW, Lippincott-Schwartz J (2008) Addressing membrane protein topology using the fluorescence protease protection (FPP) assay. Methods Mol Biol 440:227–233

    Article  PubMed  CAS  Google Scholar 

  25. Shepshelovich J, Hirschberg K (2007) Expression, localization, and topology of fluorescently tagged plasma membrane-targeted transmembrane proteins. Methods Mol Biol 390:393–403

    Article  PubMed  CAS  Google Scholar 

  26. Yguerabide J, Schmidt JA, Yguerabide EE (1982) Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys J 40:69–75

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Wellcome Trust Senior Research Fellowship 095209 to E.C.S. and Wellcome Trust Centre for Cell Biology core funding 092076.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zuleger, N., Kelly, D.A., Schirmer, E.C. (2013). Considering Discrete Protein Pools when Measuring the Dynamics of Nuclear Membrane Proteins. In: Shav-Tal, Y. (eds) Imaging Gene Expression. Methods in Molecular Biology, vol 1042. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-526-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-526-2_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-525-5

  • Online ISBN: 978-1-62703-526-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics