Skip to main content

Novel Animal Models for Tracking the Fate and Contributions of Bone Marrow Derived Cells in Diabetic Healing

  • Protocol
  • First Online:
Wound Regeneration and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1037))

Abstract

There is a vast wealth of information to be gained by tracking both the fate and contribution of individual cell types to the wound healing response. This is particularly important in research focused on impaired healing, such as diabetic wound healing, where the number or function of one or more specific cell types may be abnormal and contribute to the observed healing derangements. Specifically, diabetic wounds have been shown to have an overactive inflammatory response and decreased angiogenesis. The ability to track specific cell types participating in these responses would dramatically improve our understanding of the cellular derangements in diabetic healing. In this chapter, we review two novel chimeric models based on the leptin deficient Db/Db mouse. The use of these models allows for the tracking of bone marrow derived inflammatory and progenitor cell populations as well as the determination of the molecular contributions of these cell populations to the wound healing response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wild S et al (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  2. (2011) National diabetes information clearinghouse: National diabetes statistics fact sheet. http://diabetes.niddk.nih.gov/dm/pubs/statistics/index.aspx, Accessed 2 Aug 2011

  3. Bermudez DM, Liechty KW (2010) Mesencymal stem cells in diabetic wound healing. In: Chandan S (ed) Advances in wound care, vol 1. Mary Ann Liebert, New York, pp 477–482

    Google Scholar 

  4. Kranke P et al (2004) Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev (1). Art No. CD004123

    Google Scholar 

  5. Steed DL (2006) Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plast Reconstr Surg 117:143S–149S

    Article  CAS  PubMed  Google Scholar 

  6. Nilsson J et al (2008) Inflammation and immunity in diabetic vascular complications. Curr Opin Lipidol 19:519–524

    Article  CAS  PubMed  Google Scholar 

  7. Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366:1736–1743

    Article  PubMed  Google Scholar 

  8. Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes (comment). J Clin Invest 117:1219–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Maruyama K et al (2007) Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to the impaired cutaneous healing response associated with diabetes mellitus. Am J Path 170:1178–1191

    Article  PubMed Central  PubMed  Google Scholar 

  10. Khanna S et al (2010) Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLos One 5(3):e9539

    Article  PubMed Central  PubMed  Google Scholar 

  11. Albiero M et al (2011) Defective recruitment, survival and proliferation of bone marrow-derived progenitor cells at sites of delayed diabetic wound healing in mice. Diabetologia 54:945–953

    Article  CAS  PubMed  Google Scholar 

  12. Asahara T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    Article  CAS  PubMed  Google Scholar 

  13. Bluff JE et al (2007) Bone marrow-derived endothelial progenitor cells do not contribute significantly to new vessels during incisional wound healing. Exp Hematol 35:500–506

    Article  CAS  PubMed  Google Scholar 

  14. Hayakawa J et al (2003) Generation of a chimeric mouse reconstituted with green fluorescent protein-positive bone marrowcells: a useful model for studying the behavior of bone marrow cells in regeneration in vivo. Int J Hematol 77:456–462

    Article  PubMed  Google Scholar 

  15. Loots MA et al (1998) Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol 111:850–857

    Article  CAS  PubMed  Google Scholar 

  16. Grice E et al (2010) Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. PNAS 107(33):14799–14804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dandona P et al (2004) Endothelial dysfunction, inflammation and diabetes. Rev Endocr Metab Disord 5:189–197

    Article  CAS  PubMed  Google Scholar 

  18. Oren et al (2007) Cellular dysfunction in the diabetic fibrobalst: impairment in migration, vascular endothelial factor production, and response to hypoxia. Am J Pathol 162:303–312

    Google Scholar 

  19. Roukis TS (2010) Bacterial skin contamination before and after surgical preparation of the foot, ankle and lower leg in patients with diabetes and intact skin versus patients with diabetes and ulceration: a prospective controlled therapeutic study. J Foot Ankle Surg 49(4):348–356

    Article  PubMed  Google Scholar 

  20. Pradhan L et al (2011) Gene expression of proinflammatory cytokines and neuropeptides in diabetic wound healing. J Surg Res 167(2):336–342

    Article  CAS  PubMed  Google Scholar 

  21. Mustoe TA et al (2006) Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 117(Suppl 7):64–72

    Google Scholar 

  22. Leibovich SJ, Ross R (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78:71–100

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Abrass CK, Hori M (1984) Alterations in Fc receptor function of macrophages from streptozotocin-induced diabetic rats. J Immunol 133:1307–1312

    CAS  PubMed  Google Scholar 

  24. Meszaros AJ et al (1999) Macrophage phagocytosis of wound neutrophils. J Leukoc Biol 65:35–42

    CAS  PubMed  Google Scholar 

  25. Koh TJ, DiPietro LA (2011) Inflammation and wound healing: the role of the macrophage. Expet Rev Mol Med 13:e23

    Article  Google Scholar 

  26. Lucas T et al (2010) Differential roles of macrophages in diverse phases of skin repair. J Immunol 184:3964–3977

    Article  CAS  PubMed  Google Scholar 

  27. Riches DWH (1996) Macrophage involvement in wound repair, modeling and fibrosis. In: Clark RAF (ed) The molecular and cellular biology of wound repair, 2nd edn. Plenum Press, New York, NY, pp 95–142

    Google Scholar 

  28. Martin A et al (2003) Abnormal angiogenesis in diabetes mellitus. Med Res Rev 23:117–145

    Article  CAS  PubMed  Google Scholar 

  29. Bauer SM et al (2006) The bone marrow-derived endothelial progenitor cell response is impaired in delayed wound healing from ischemia. J Vasc Surg 43:134–141

    Article  PubMed  Google Scholar 

  30. Kämpfer H et al (2001) Expressional regulation of angiopoetin-1 and -2 and tie-1 and -2 receptor tyrosine kinases during cutaneous wound healing: a comparative study of normal and impaired repair. Lab Invest 81:361–372

    Article  PubMed  Google Scholar 

  31. Velazquez OC (2007) Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. J Vasc Surg 45(Suppl A):A39–A47

    Article  PubMed Central  PubMed  Google Scholar 

  32. Gallagher KA et al (2007) Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF 1α. J Clin Invest 117:1249–1259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yin Y et al (2010) SDF-1α involved in mobilization and recruitment of endothelial progenitor cells after arterial injury in mice. Cardiovasc Pathol 19:218–227

    Article  CAS  PubMed  Google Scholar 

  34. Bermudez DM et al (2011) Inhibition of stromal cell-derived factor-1α further impairs diabetic wound healing. J Vasc Surg 53:774–784

    Article  PubMed Central  PubMed  Google Scholar 

  35. Marrotte EJ et al (2010) Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J Clin Invest 120:4207–4219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gallagher KA et al (2006) Hyperbaric oxygen and bone marrow-derived endothelial progenitor cells in diabetic wound healing. Vascular 14:328–337

    Article  PubMed  Google Scholar 

  37. O’Neill TJ et al (2005) Mobilization of bone marrow-derived cells enhances the angiogenic response to hypoxia without transdifferentiation into endothelial cells. Circ Res 97:1027–1035

    Article  PubMed  Google Scholar 

  38. Mϋller M et al (2010) On the longevity of resident endoneurial macrophages in the peripheral nervous system: a study of physiological macrophage turnover in bone marrow chimeric mice. J Peripher Nerv Syst 15(4):357–365

    Article  Google Scholar 

  39. Imasawa T (2003) Roles of bone marrow in glomerular diseases. Clin Exp Nephrol 7:179–185

    Article  PubMed  Google Scholar 

  40. Motoike T et al (2000) Universal GFP reporter for the study of vascular development. Genesis 28:75–81

    Article  CAS  PubMed  Google Scholar 

  41. v Michaels J et al (2007) Db/Db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair Regen 15(5):665–670

    Article  PubMed  Google Scholar 

  42. Fang RC et al (2010) Limitations of the Db/Db mouse in translational wound healing research: Is the NONcNZO10 polygenic mouse model superior? Wound Repair Regen 18(6):605–613

    Article  PubMed  Google Scholar 

  43. Rakieten N et al (1963) Studies on the diabetogenic action of streptozotocin. Cancer Chemother Rep 29:91

    Google Scholar 

  44. Badillo AT et al (2007) Lentiviral gene transfer of SDF-1 alpha to wounds improves diabetic wound healing. J Surg Res 143(1):35–42

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Caskey, R.C., Liechty, K.W. (2013). Novel Animal Models for Tracking the Fate and Contributions of Bone Marrow Derived Cells in Diabetic Healing. In: Gourdie, R., Myers, T. (eds) Wound Regeneration and Repair. Methods in Molecular Biology, vol 1037. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-505-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-505-7_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-504-0

  • Online ISBN: 978-1-62703-505-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics