Skip to main content

Unusual Members of the PVC Superphylum: The Methanotrophic Verrucomicrobia Genus “Methylacidiphilum

  • Chapter
  • First Online:
Planctomycetes: Cell Structure, Origins and Biology

Abstract

Aerobic methanotrophic bacteria can use methane as their sole energy source. Most known species belong to the phylum Proteobacteria. One exception is a group of thermoacidophilic methanotrophic bacteria belonging to the phylum Verrucomicrobia. Although not yet taxonomically validated, these bacteria have been described physiologically and genomically and given the tentative genus name “Methylacidiphilum.” They are found in geothermal environments with moderate to high temperatures (up to 65 °C) and high acidities (down to pH 1). The genetic pathways conferring a methanotrophic lifestyle in verrucomicrobial methanotrophs are similar to their proteobacterial counterparts, although rather than fixing carbon derived from methane, they are autotrophs obtaining carbon via the Calvin-Benson-Bassham cycle. Lateral gene transfer appears to have played a major role in shaping the genomes of “Methylacidiphilum” spp. The following chapter summarizes what we presently know about them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci U S A 105(29):10203–10208. doi:10.1073/pnas.0702643105

    Article  PubMed  CAS  Google Scholar 

  • Bodelier PL, Gillisen MJ, Hordijk K, Damste JS, Rijpstra WI, Geenevasen JA, Dunfield PF (2009) A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. ISME J 3(5):606–617. doi:10.1038/ismej.2009.6

    Article  PubMed  CAS  Google Scholar 

  • Castaldi S, Tedesco D (2005) Methane production and consumption in an active volcanic environment of Southern Italy. Chemosphere 58(2):131–139. doi:10.1016/j.chemosphere.2004.08.023

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol. doi:10.1111/j.1462-2920.2011.02464.x

    PubMed  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187(13):4665–4670. doi:10.1128/JB.187.13.4665-4670.2005

    Article  PubMed  CAS  Google Scholar 

  • Dunfield PF (2009) Methanotrophy in extreme environments. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. http://www.els.net doi: 10.1002/9780470015902.a0021897

  • Dunfield PF, Dedysh SN (2010) Acidic environments. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin. doi:10.1007/978-3-540-77587-4_158

    Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450(7171):879–882. doi:10.1038/nature06411

    Article  PubMed  CAS  Google Scholar 

  • Erikstad HA, Jensen S, Keen TJ, Birkeland NK (2012) Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph “Methylacidiphilum kamchatkense” Kam1. Extremophiles 16:405–409. doi:10.1007/s00792-012-0439-y

    Article  PubMed  CAS  Google Scholar 

  • Etiope G, Klusman RW (2002) Geologic emissions of methane to the atmosphere. Chemosphere 49(8):777–789. doi:S0045-6535(02)00380-6

    Article  PubMed  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464(7288):543–548. doi:10.1038/nature08883

    Article  PubMed  CAS  Google Scholar 

  • Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75(11):3656–3662. doi:10.1128/AEM.00067-09

    Article  PubMed  CAS  Google Scholar 

  • Giggenbach WO (1994) Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res 68:89–116. doi:10.1016/0377-0273(95)00009-J

    Article  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    PubMed  CAS  Google Scholar 

  • Hedlund BP (2010) Phylum XXIII. Verrucomicrobia phyl. nov. In: Whitman WB (ed) Bergey’s manual of systematic bacteriology. Springer, New York. doi:10.1007/978-0-387-68572-4_11

    Google Scholar 

  • Hou S, Makarova KS, Saw JH, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26. doi:10.1186/1745-6150-3-26

    Article  PubMed  Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 °C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 105(1):300–304. doi:10.1073/pnas.0704162105

    Article  PubMed  CAS  Google Scholar 

  • Khadem AF, Pol A, Jetten MS, Op den Camp HJM (2010) Nitrogen fixation by the verrucomicrobial methanotroph “Methylacidiphilum fumariolicum” SolV. Microbiology 156(Pt 4):1052–1059. doi:10.1099/mic.0.036061-0

    Article  PubMed  CAS  Google Scholar 

  • Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, Jetten MS, Op den Camp HJM (2011) Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation.J Bacteriol 193(17):4438–4446. doi:10.1128/JB.00407-11

    Article  PubMed  CAS  Google Scholar 

  • Khadem AF, Wieczorek AS, Pol A, Vuilleumier S, Harhangi HR, Dunfield PF, Kalyuzhnaya MG, Murrell JC, Francoijs K-J, Stunnenberg HG, Stein LY, DiSpirito AA, Semrau JD, Lajus A, Medigue C, Klotz MG, Jetten MSM, Op den Camp HJM (2012a) Draft genome sequence of the volcano-Inhabiting thermoacidophilic methanotroph Methylacidiphilum fumariolicum Strain SoIV. J Bacteriol 194:3729–3730. doi:10.1128/JB.00501-12

    Article  PubMed  CAS  Google Scholar 

  • Khadem AF, Pol A, Wieczorek A, Jetten MSM, Op den Camp HJM (2012b) Metabolic regulation of “Ca. Methylacidiphilum fumariolicum” SolV cells grown under different nitrogen and oxygen limitations. Front Microbiol 3:266. doi:10.3389/fmicb.2012.00266

    PubMed  Google Scholar 

  • Kip N, Dutilh BE, Pan Y, Bodrossy L, Neveling K, Kwint MP, Jetten MSM, Op den Camp HJM (2011) Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog. Environ Microbiol Rep 3(6):667–673. doi:10.1111/j.1758-2229.2011.00260.x

    Article  PubMed  Google Scholar 

  • Klotz MG, Schmid MC, Strous M, Op den Camp HJM, Jetten MS, Hooper AB (2008) Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Environ Microbiol 10(11):3150–3163. doi:10.1111/j.1462-2920.2008.01733.x

    Article  PubMed  CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334. doi:10.1146/annurev.micro.61.080706.093130

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371 doi: 10.1093/nar/gkh293

  • Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1(5):293–306. doi:10.1111/j.1758-2229.2009.00022.x

    Article  PubMed  CAS  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450(7171):874–878. doi:10.1038/nature06222

    Article  PubMed  CAS  Google Scholar 

  • Poret-Peterson AT, Graham JE, Gulledge J, Klotz MG (2008) Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath. ISME J 2(12): 1213–1220. doi:10.1038/ismej.2008.71

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18(3):502–504. doi:10.1093/bioinformatics/18.3.502

    Article  PubMed  CAS  Google Scholar 

  • Sharp CE, Stott MB, Dunfield PF (2012) Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing. Front Microbiol 3:303. doi:10.3389/fmicb.2012.00303

    Article  PubMed  Google Scholar 

  • Stein LY, Klotz MG (2011) Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem Soc Trans 39(6):1826–1831. doi:10.1042/BST20110712

    Article  PubMed  CAS  Google Scholar 

  • Stein LY, Roy R, Dunfield PF (2012) Aerobic methanotrophy and nitrification: processes and connections. In: eLS. Wiley, Chichester. http://www.els.net. doi:10.1002/9780470015902.a0022213

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  • Tavormina PL, Ussler W 3rd, Joye SB, Harrison BK, Orphan VJ (2010) Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. ISME J 4(5):700–710. doi:10.1038/ismej.2009.155

    Article  PubMed  Google Scholar 

  • Teh AH, Saito JA, Baharuddin A, Tuckerman JR, Newhouse JS, Kanbe M, Newhouse EI, Rahim RA, Favier F, Didierjean C, Sousa EH, Stott MB, Dunfield PF, Gonzalez G, Gilles-Gonzalez MA, Najimudin N, Alam M (2011) Hell’s Gate globin I: an acid and thermostable bacterial hemoglobin resembling mammalian neuroglobin. FEBS Lett 585(20):3250–3258. doi:10.1016/j.febslet.2011.09.002

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591. doi:10.1038/nrmicro1931

    Article  PubMed  CAS  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. In: Laskin AI, Sariaslani S, Gadd G (eds) Advances in applied microbiology. Academic Press, New York. doi:10.1016/S0065-2164(07)00005-6

    Google Scholar 

  • Tsubota J, Eshinimaev B, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55(Pt 5):1877–1884. doi:10.1099/ijs.0.63691-0

    Article  PubMed  CAS  Google Scholar 

  • van Winden JF, Talbot HM, Kip N, Reichart G-J, Pol A, McNamara NP, Jetten MSM, Op den Camp HJM, Sinninghe Damste JS (2012) Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss. Geochim Cosmochim Acta 77:52–61. doi:10.1016/j.gca.2011.10.026

    Article  Google Scholar 

  • Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22(18):2196–2203. doi:10.1093/bioinformatics/btl369

    Article  PubMed  CAS  Google Scholar 

  • Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methe B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2(10):e303. doi:10.1371/journal.pbio.0020303

    Article  PubMed  Google Scholar 

  • Xu H (2010) Synergistic roles of microorganisms in mineral precipitates associated with deep sea methane seeps. In: Batron LL, Mandi M, Loy A (eds) Geomicrobiology: molecular and environmental perspective. Springer, New York. doi:10.1007/978-90-481-9204-5_15

    Google Scholar 

  • Yang Z, Rannala B (2005) Branch-length prior influences Bayesian posterior probability of phylogeny. Syst Biol 54(3):455–470. doi:10.1080/10635150590945313

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

C.E.S. is supported by fellowships from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Alberta Innovates Technology Futures. The work was supported by an NSERC Discovery Grant (P.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Dunfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharp, C.E., den Camp, H.J.M.O., Tamas, I., Dunfield, P.F. (2013). Unusual Members of the PVC Superphylum: The Methanotrophic Verrucomicrobia Genus “Methylacidiphilum”. In: Fuerst, J. (eds) Planctomycetes: Cell Structure, Origins and Biology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-502-6_9

Download citation

Publish with us

Policies and ethics