Skip to main content

Monogenic and Polygenic Contributions to Hypertension

  • Chapter
  • First Online:
Pediatric Hypertension

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

Abstract

This chapter provides an overview of the genetics of hypertension, reviewing what is known about rare Mendelian forms of hypertension, which can be explained by mutations in single genes, as well as the genetics of primary hypertension. Different approaches such as candidate gene approaches, linkage studies, and genome-wide association studies are discussed. It is hoped that this chapter will provide a concise primer for reading the literature in the area of genetics and hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291:1304–51.

    PubMed  CAS  Google Scholar 

  2. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Google Scholar 

  3. Delles C, Padmanabhan S. Genetics and hypertension: is it time to change my practice. Can J Cardiol. 2012;28:296–304.

    PubMed  Google Scholar 

  4. Bogardus C, Baier L, Permana P, Prochazka M, Wolford J, Hanson R. Identification of susceptibility genes for complex metabolic diseases. Ann NY Acad Sci. 2002;967:1–6.

    PubMed  CAS  Google Scholar 

  5. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995;11:241–7.

    PubMed  CAS  Google Scholar 

  6. Wang DG, Fan J-B, Siao C-J, et al. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280:1077–82.

    PubMed  CAS  Google Scholar 

  7. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–56.

    PubMed  CAS  Google Scholar 

  8. Dluhy RG. Screening for genetic causes of hypertension. Curr Hypertens Rep. 2002;4:439–44.

    PubMed  Google Scholar 

  9. Wadei HM, Textor SC. The role of the kidney in regulating arterial blood pressure. Nat Rev Nephrol. 2012;8:602–9.

    PubMed  CAS  Google Scholar 

  10. Yiu VW, Dluhy RG, Lifton RP, Guay-Woodford LM. Low peripheral plasma renin activity as a critical marker in pediatric hypertension. Pediatr Nephrol. 1997;11:343–6.

    PubMed  CAS  Google Scholar 

  11. Wilson H, Disse-Nicodeme S, Choate K, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107–11.

    PubMed  CAS  Google Scholar 

  12. Dluhy RG. Pheochromocytoma: the death of an axiom. N Engl J Med. 2002;346:1486–8.

    PubMed  Google Scholar 

  13. Melcescu E, Phillips J, Moll G, Subauste JS, Koch CA. Syndromes of mineralocorticoid excess. Horm Metab Res. 2012;44:867–78.

    PubMed  CAS  Google Scholar 

  14. Miura K, Yoshinaga K, Goto K, et al. A case of glucocorticoid-responsive hyperaldosteronism. J Clin Endocrinol Metab. 1968;28:1807.

    PubMed  CAS  Google Scholar 

  15. New MI, Siegal EJ, Peterson RE. Dexamethasone-suppressible hyperaldosteronism. J Clin Endocrinol Metab. 1973;37:93.

    PubMed  CAS  Google Scholar 

  16. Biebink GS, Gotlin RW, Biglieri EG, Katz FH. A kindred with familial glucocorticoid-suppressible aldosteronism. J Clin Endocrinol Metab. 1973;36:715.

    Google Scholar 

  17. Grim CE, Weinberger MH. Familial dexamethasone-suppressible hyperaldosteronism. Pediatrics. 1980;65:597.

    PubMed  CAS  Google Scholar 

  18. Oberfield SE, Levine LS, Stoner E, et al. Adrenal glomerulosa function in patients with dexamethasone-suppressible normokalemic hyperaldosteronism. J Clin Endocrinol Metabl. 1981;53:158.

    CAS  Google Scholar 

  19. Sutherland DJA, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can Med Assoc J. 1966;95:1109.

    PubMed  CAS  Google Scholar 

  20. New MI, Peterson RE. A new form of congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1967;27:300.

    PubMed  CAS  Google Scholar 

  21. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. Chimeric 11β-hydroxylase/aldosterone synthase gene causes GRA and human hypertension. Nature. 1992;355:262–5.

    PubMed  CAS  Google Scholar 

  22. Lifton RP, Dluhy RG, Powers M, Rich GM, Gutkin M, Fallo F, et al. Hereditary hypertension caused by chimeric gene duplications and ectopic expression of aldosterone synthetase. Nat Genet. 1992;2:66–74.

    PubMed  CAS  Google Scholar 

  23. Ulick S, Chu MD. Hypersecretion of a new cortico-steroid, 18-hydroxycortisol in two types of adrenocortical hypertension. Clin Exp Hypertens. 1982;4(9/10):1771–7.

    CAS  Google Scholar 

  24. Ulick S, Chu MD, Land M. Biosynthesis of 18-oxocortisol by aldosterone-producing adrenal tissue. J Biol Chem. 1983;258:5498–502.

    PubMed  CAS  Google Scholar 

  25. Gomez-Sanchez CE, Montgomery M, Ganguly A, Holland OB, Gomez-Sanchez EP, Grim CE, et al. Elevated urinary excretion of 18-oxocortisol in glucocorticoid-suppressible aldosteronism. J Clin Endocrinol Metab. 1984;59:1022–4.

    PubMed  CAS  Google Scholar 

  26. Shackleton CH. Mass spectrometry in the diagnosis of steroid-related disorders and in hypertension research. J Steroid Biochem Mol Biol. 1993;45:127–40.

    PubMed  CAS  Google Scholar 

  27. Dluhy RG, Anderson B, Harlin B, Ingelfinger J, Lifton R. Glucocorticoid-remediable aldosteronism is associated with severe hypertension in early childhood. J Pediatr. 2001;138:715–20.

    PubMed  CAS  Google Scholar 

  28. Kamrath C, Maser-Gluth C, Haag C, Schulze E. Diagnosis of glucocorticoid-remediable aldosteronism in hypertensive children. Horm Res Paediatr. 2011;76(2):93–8.

    PubMed  CAS  Google Scholar 

  29. Fallo F, Pilon C, Williams TA, Sonino N, Morra Di Cella S, Veglio F. Coexistence of different phenotypes in a family with glucocorticoid-remediable aldosteronism. J Hum Hypertens. 2004;18:47–51.

    PubMed  CAS  Google Scholar 

  30. Lafferty AR, Torpy DJ, Stowasser M, Taymans SE, Lin JP, Huggard P, et al. A novel genetic locus for low renin hypertension: familial hyperaldosteronism type II maps to chromosome 7 (7p22). Med Genet. 2000;37:831–5.

    CAS  Google Scholar 

  31. Stowasser M, Gordon RD, Tunny TJ, Klemm SA, Finn WL, Krek AL. Familial hyperaldosteronism type II: five families with a new variety of primary aldosteronism. Clin Exp Pharm Physiol. 1992;19:319–22.

    CAS  Google Scholar 

  32. Torpy DJ, Gordon RD, Lin JP, Huggard PR, Taymans SE, Stowasser M, et al. Familial hyperaldosteronism type II: description of a large kindred and exclusion of the aldosterone synthase (CYP11B2) gene. J Clin Endocr Metab. 1998;83:3214–8.

    PubMed  CAS  Google Scholar 

  33. Jeske YW, So A, Kelemen L, Sukor N, Willys C, Bulmer B, et al. Examination of chromosome 7p22 candidate genes RBaK, PMS2 and GNA12 in familial hyperaldosteronism type II. Clin Exp Pharmacol Physiol. 2008;35:380–5.

    PubMed  CAS  Google Scholar 

  34. Monticone S, Hattangady NG, Nishimoto K, Mantero F, Rubin B, Cicala MV, et al. Effect of KCNJ5 mutations on gene expression in aldosterone-producing adenomas and adrenocortical cells. J Clin Endocrinol Metab. 2012;97:E1567–72.

    PubMed  CAS  Google Scholar 

  35. Stowasser M, Pimenta E, Gordon RD. Familial or genetic primary aldosteronism and Gordon syndrome. Endocrinol Metab Clin N Am. 2011;40:343–68.

    CAS  Google Scholar 

  36. Geller DS, Zhang J, Wisgerhof MV, et al. A novel form of human mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab. 2008;93:3117–23.

    PubMed  CAS  Google Scholar 

  37. Choi M, Scholl UI, Bjorklund P, et al. K1 channel mutations in adrenal aldosterone producing adenomas and hereditary hypertension. Science. 2011;331:768–72.

    PubMed  CAS  Google Scholar 

  38. Cerame BI, New MI. Hormonal hypertension in children: 11b-hydroxylase deficiency and apparent mineralocorticoid excess. J Pediatr Endocrinol. 2000;13:1537–47.

    CAS  Google Scholar 

  39. New MI, Levine LS, Biglieri EG, Pareira J, Ulick S. Evidence for an unidentified ACTH-induced steroid hormone causing hypertension. J Clin Endocrinol Metab. 1977;44:924–33.

    PubMed  CAS  Google Scholar 

  40. New MI, Oberfield SE, Carey RM, Greig F, Ulick S, Levine LS. A genetic defect in cortisol metabolism as the basis for the syndrome of apparent mineralocorticoid excess. In: Mnatero F, Biglieri EG, Edwards CRW, editors. Endocrinology of hypertension, Serono Symposia, vol. 50. New York: Academic; 1982. p. 85–101.

    Google Scholar 

  41. Moudgil A, Rodich G, Jordan SC, Kamil ES. Nephrocalcinosis and renal cysts associated with apparent mineralocorticoid excess syndrome. Pediatr Nephrol. 2000;15(1–2):60–2.

    PubMed  CAS  Google Scholar 

  42. Mercado AB, Wilson RC, Chung KC, Wei J-Q, New MI. J Clin Endocrinol Metab. 1995;80:2014–20.

    PubMed  CAS  Google Scholar 

  43. Ugrasbul F, Wiens T, Rubinstein P, New MI, Wilson RC. Prevalence of mild apparent mineralocorticoid excess in Mennonites. J Clin Endocrinol Metab. 1999;84:4735–8.

    PubMed  CAS  Google Scholar 

  44. New MI, Nimkarn S, Brandon DD, Cunningham-Rundles S, Wilson RC, Newfield RS, Vandermeulen J, Barron N, Russo C, Loriaux DL, O’Malley B. Resistance to multiple steroids in two sisters. J Ster Biochem Molec Biol. 2001;76:161–6.

    CAS  Google Scholar 

  45. Li A, Li KXZ, Marui S, Krozowski ZS, Batista MC, Whorwood C, Arnhold IJP, Shackleton CHL, Mendonca BB, Stewart PM. Apparent mineralocorticoid excess in a Brazilian kindred: hypertension in the heterozygote state. J Hypertens. 1997;15:1397–402.

    PubMed  CAS  Google Scholar 

  46. Coeli FB, Ferraz LF, Lemos-Marini SH, Rigatto SZ, Belangero VM, de Mello MP. Apparent mineralocorticoid excess syndrome in a Brazilian boy caused by the homozygous missense mutation p.R186C in the HSD11B2 gene. Arq Bras Endocrinol Metabol. 2008;52:1277–81.

    PubMed  Google Scholar 

  47. Bailey MA, Paterson JM, Hadoke PW, Wrobel N, Bellamy CO, Brownstein DG, Seckl JR, Mullins JJ. A switch in the mechanism of hypertension in the syndrome of apparent mineralocorticoid excess. J Am Soc Nephrol. 2008;19:47–58. Epub 2007 Nov 21.

    PubMed  CAS  Google Scholar 

  48. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, Sigler PB, Lifton RP. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;289:119–23.

    PubMed  CAS  Google Scholar 

  49. Rafestin-Oblin ME, Souque A, Bocchi B, Pinon G, Fagart J, Vandewalle A. The severe form of hypertension caused by the activating S810L mutation in the mineralocorticoid receptor is cortisone related. Endocrinology. 2003;144:528–33.

    PubMed  CAS  Google Scholar 

  50. Kamide K, Yang J, Kokubo Y, Takiuchi S, Miwa Y, Horio T, Tanaka C, Banno M, Nagura J, Okayama A, Tomoike H, Kawano Y, Miyata T. A novel missense mutation, F826Y, in the mineralocorticoid receptor gene in Japanese hypertensives: its implications for clinical phenotypes. Hypertens Res. 2005;28:703–9.

    PubMed  CAS  Google Scholar 

  51. Pinon GM, Fagart J, Souque A, Auzou G, Vandewalle A, Rafestin-Oblin ME. Identification of steroid ligands able to inactivate the mineralocorticoid receptor harboring the S810L mutation responsible for a severe form of hypertension. Mol Cell Endocrinol. 2004;217:181–8.

    PubMed  CAS  Google Scholar 

  52. New MI, Wilson RC. Steroid disorders in children: congenital adrenal hyperplasia and apparent mineralocorticoid excess. PNAS. 1999;96:12790–7.

    PubMed  CAS  Google Scholar 

  53. New MI, Seaman MP. Secretion rates of cortisol and aldosterone precursors in various forms of congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1970;30:361.

    PubMed  CAS  Google Scholar 

  54. New MI, Levine LS. Hypertension of childhood with suppressed renin. Endocrinol Rev. 1980;1:421–30.

    CAS  Google Scholar 

  55. New MI. Inborn errors of adrenal steroidogenesis. Mol Cell Endocrinol. 2003;211(1–2):75–83.

    PubMed  CAS  Google Scholar 

  56. Krone N, Arlt W. Genetics of congenital adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab. 2009;23:181–92.

    PubMed  CAS  Google Scholar 

  57. Mimouni M, Kaufman H, Roitman A, Morag C, Sadan N. Hypertension in a neonate with 11 beta-hydroxylase deficiency. Eur J Pediatr. 1985;143:231–3.

    PubMed  CAS  Google Scholar 

  58. Zachmann M, Vollmin JA, New MI, Curtius C-C, Prader A. Congenital adrenal hyperplasia due to deficiency of 11-hydroxylation of 17a-hydroxylated steroids. J Clin Endocrinol Metab. 1971;33:501.

    PubMed  CAS  Google Scholar 

  59. White PC, Dupont J, New MI, Lieberman E, Hochberg Z, Rosler A. A mutation in CYP11B1 [Arg448His] associated with steroid 22-beta-hydroxylase deficiency in Jews of Moroccan origin. J Clin Invest. 1991;87:1664–7.

    PubMed  CAS  Google Scholar 

  60. Curnow KM, Slutker L, Vitek J, et al. Mutations in the CYP11B1 gene causing congenital adrenal hyperplasia and hypertension cluster in exons 6, 7 and 8. Proc Natl Acad Sci USA. 1993;90:4552–6.

    PubMed  CAS  Google Scholar 

  61. Skinner CA, Rumsby G. Steroid 11 beta-hydroxylase deficiency caused by a 5-base pair duplication in the CYP11B1 gene. Hum Mol Genet. 1994;3:377–8.

    PubMed  CAS  Google Scholar 

  62. Helmberg A, Ausserer B, Kofler R. Frameshift by insertion of 2 base pairs in codon 394 of CYP11B1 causes congenital adrenal hyperplasia due to steroid 11beta-hydroxylase deficiency. J Clin Endocrinol Metab. 1992;75:1278–81.

    PubMed  CAS  Google Scholar 

  63. Biglieri EG, Herron MA, Brust N. 17-hydroxylation deficiency. J Clin Invest. 1966;45:1946.

    PubMed  CAS  Google Scholar 

  64. New MI. Male pseudohermaphroditism due to 17-alpha-hydroxylase deficiency. J Clin Invest. 1970;49:1930.

    PubMed  CAS  Google Scholar 

  65. Mantero F, Scaroni C. Enzymatic defects of steroidogenesis: 17-alpha –hydroxylase deficiency. Pediatr Adol Endocrinol. 1984;13:83–94.

    Google Scholar 

  66. Rosa S, Duff C, Meyer M, Lang-Muritano M, Balercia G, Boscaro M, et al. P450c17 deficiency: clinical and molecular characterization of six patients. J Clin Endocrinol Metab. 2007;92:1000–7.

    PubMed  CAS  Google Scholar 

  67. Mansfield TA, Simon DB, Farfel Z, Bia M, Tucci JR, Lebel M, et al. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31-42 and 17p11-q21. Nat Genet. 1997;16:202–5.

    PubMed  CAS  Google Scholar 

  68. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK Kinases. Science. 2001;293:1107–12.

    PubMed  CAS  Google Scholar 

  69. Wilson FH, Kahle KT, Sabath E, Lalioti MD, Rapson AK, Hoover RS, et al. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wildtype but not mutant WNK4. Proc Natl Acad Sci USA. 2003;100:680–4.

    PubMed  CAS  Google Scholar 

  70. Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest. 2003;111:1039–45.

    PubMed  CAS  Google Scholar 

  71. Erdogan G, Corapciolgu D, Erdogan MF, Hallioglu J, Uysal AR. Furosemide and dDAVP for the treatment of pseudohypoaldosteronism type II. J Endocrinol Invest. 1997;20:681–4.

    PubMed  CAS  Google Scholar 

  72. Liddle GW, Bledsoe T, Coppage WS. A familial renal disorder simulating primary aldosteronism with negligible aldosterone secretion. Trans Assoc Phys. 1963;76:199–213.

    CAS  Google Scholar 

  73. Wang C, Chan TK, Yeung RT, Coghlan JP, Scoggins BA, Stockigt JR. The effect of triamterene and sodium intake on renin, aldosterone, and erythrocyte sodium transport in Liddle’s syndrome. J Clin Endocrinol Metabol. 1981;52:1027–32.

    CAS  Google Scholar 

  74. Botero-Velez M, Curtis JJ, Warnock DG. Brief report: Liddle’s syndrome revisited- a disorder of sodium reabsorption in the distal tubule. N Engl J Med. 1994;330:178–81.

    PubMed  CAS  Google Scholar 

  75. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, et al. Liddle’s syndrome: heritable human hypertension caused y mutations in the beta subunit of the epithelial sodium channel. Cell. 1994;79:407–14.

    PubMed  CAS  Google Scholar 

  76. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11:76–82.

    PubMed  CAS  Google Scholar 

  77. Rossier BC. 1996 Homer Smith Award Lecture: cum grano salis: the epithelial sodium channel and the control of blood pressure. J Am Soc Nephrol. 1997;8:980–92.

    PubMed  CAS  Google Scholar 

  78. Eng C, Crossey PA, Milligan LM, et al. Mutations in the RET proto-oncogene and the von Hippel-Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas. J Med Genet. 1995;32:934–7.

    PubMed  CAS  Google Scholar 

  79. Erickson D, Kudva YC, Ebersold MJ, et al. Benign paragangliomas: clinical presentation and treatment outcomes in 236 patients. J Clin Endocrinol Metab. 2001;86:5210–6.

    PubMed  CAS  Google Scholar 

  80. Baysal BE, Ferrell RE, Willett-Brozick JE, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287:848–51.

    PubMed  CAS  Google Scholar 

  81. Gimm O, Armanios M, Dziema H, Neumann HPH, Eng C. Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res. 2000;60:6822–5.

    PubMed  CAS  Google Scholar 

  82. Aguiar RC, Cox G, Pomeroy SL, Dahia PL. Analysis of the SDHD gene, the susceptibility gene for familial paraganglioma syndrome (PGL1), in pheochromocytomas. J Clin Endocrinol Metab. 2001;86:2890–4.

    PubMed  CAS  Google Scholar 

  83. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science. 1995;267:381–3.

    PubMed  CAS  Google Scholar 

  84. Neumann HPH, Berger DP, Sigmund G, Blum U, Schmidt D, Parmer RJ, et al. Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel-Lindau disease. N Engl J Med. 1993;329:1531–8.

    PubMed  CAS  Google Scholar 

  85. Neumann HPH, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, et al. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med. 2002;346:1459–66.

    PubMed  CAS  Google Scholar 

  86. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.

    PubMed  CAS  Google Scholar 

  87. Scheffler IE. Molecular genetics of succinate: quinone oxidoreductase in eukaryotes. Prog Nucleic Acid Res Mol Biol. 1998;60:267–315.

    PubMed  CAS  Google Scholar 

  88. Ackrell BA. Progress in understanding structure-function relationships in respiratory chain complex II. FEBS Lett. 2000;466:1–5.

    PubMed  CAS  Google Scholar 

  89. Bilginturan N, Zileli S, Karacadag S, Pirnar T. Hereditary brachydactyly associated with hypertension. J Med Genet. 1973;10:253–9.

    PubMed  CAS  Google Scholar 

  90. Schuster H, Wienker TF, Bahring S, Bilginturan N, Toka HR, Neitzel H, et al. Severe autosomal dominant hypertension and brachydactyly in a unique Turkish kindred maps to human chromosome 12. Nat Genet. 1996;13:98–100.

    PubMed  CAS  Google Scholar 

  91. Gong M, Zhang H, Schulz H, Lee A-A, Sun K, Bahring S, et al. Genome-wide linkage reveals a locus for human essential (primary) hypertension on chromosome 12p. Hum Molec Genet. 2003;12:1273–7.

    PubMed  CAS  Google Scholar 

  92. Bahring S, Schuster H, Wienker TF, Haller H, Toka H, Toka O, et al. Construction of a physical map and additional phenotyping in autosomal-dominant hypertension and brachydactyly, which maps to chromosome 12. (Abstract). Am J Hum Genet. 1996; 59 (suppl.): A55 only.

    Google Scholar 

  93. Nagai T, Nishimura G, Kato R, Hasegawa T, Ohashi H, Fukushima Y. Del(12)(p11.21p12.2) associated with an asphyxiating thoracic dystrophy or chondroectodermal dysplasia-like syndrome. Am J Med Genet. 1995;55:16–8.

    PubMed  CAS  Google Scholar 

  94. Bähring S, Kann M, Neuenfeld Y, Gong M, Chitayat D, Toka HR, et al. Inversion region for hypertension and brachydactyly on chromosome 12p features multiple splicing and noncoding RNA. Hypertension. 2008;51:426–31.

    PubMed  Google Scholar 

  95. Meirhaeghe A, Amouyel P. Impact of genetic variation of PPARgamma in humans. Mol Genet Metab. 2004;83:93–102.

    PubMed  CAS  Google Scholar 

  96. Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402:880–3.

    PubMed  CAS  Google Scholar 

  97. Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, et al. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes. 2003;52:910–7.

    PubMed  CAS  Google Scholar 

  98. Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab. 2002;87:408–11.

    PubMed  CAS  Google Scholar 

  99. Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes. 2002;51:3586–90.

    PubMed  CAS  Google Scholar 

  100. Wilson FH, Hariri A, Farhi A, Zhao H, Petersen KF, Toka HR, et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004;306:1190–4.

    PubMed  CAS  Google Scholar 

  101. Harrap SB. Genetic analysis of blood pressure and sodium balance in the spontaneously hypertensive rat. Hypertension. 1986;8:572–82.

    PubMed  CAS  Google Scholar 

  102. Rapp JP. Genetic analysis of inherited hypertension in the rat. Physiol Rev. 2000;80:135–72.

    PubMed  CAS  Google Scholar 

  103. Delles C, McBride MW, Graham D, Padmanabhan S, Dominiczak A. Genetics of hypertension: from experimental animals to humans. Biochim Biophys Acta 2009 Dec 24. doi:10.1016/j.bbadis.2009.12.006 [epub ahead of print].

  104. Doris PA. Hypertension genetics, SNPs, and the common disease: common variant hypothesis. Hypertension. 2002;39(Part 2):323–31.

    PubMed  CAS  Google Scholar 

  105. Cvetkovic B, Sigmund CD. Understanding hypertension through genetic manipulation in mice. Kidney Int. 2000;57:863–74.

    PubMed  CAS  Google Scholar 

  106. Gordon JW, Ruddle FH. Gene transfers into mouse embryos: production of transgenic mice by pronuclear integration. Methods Enzymol. 1983;101:411–33.

    PubMed  CAS  Google Scholar 

  107. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    PubMed  CAS  Google Scholar 

  108. Capecchi MR. Altering the genome by homologous recombination. Science. 1989;244:1288–92.

    PubMed  CAS  Google Scholar 

  109. Jacob HJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, Dzau VJ, Lander ES. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell. 1991;67:213–24.

    PubMed  CAS  Google Scholar 

  110. Hilbert P, Lindpaintner K, Beckmann JS, Serikawa T, Soubrier F, Dubay C, Cartwright P, De Gouyon B, Julier C, Takahasi S, et al. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature. 1991;353:521–9.

    PubMed  CAS  Google Scholar 

  111. Saavedra JM. Opportunities and limitations of genetic analysis of hypertensive rat strains. J Hypertens. 2009;27:1129–33.

    PubMed  CAS  Google Scholar 

  112. Lalouel J-M, Rohrwasser A, Terreros D, Morgan T, Ward K. Angiotensinogen in essential hypertension: from genetics to nephrology. J Amer Soc Nephrol. 2001;12:606–15.

    CAS  Google Scholar 

  113. Zhu X, Yen-Pei CC, Yan D, Weder A, Cooper R, Luke A, et al. Associations between hypertension and genes in the renin-angiotensin system. Hypertension. 2003;41:1027–34.

    PubMed  CAS  Google Scholar 

  114. Rice T, Rankinen T, Province MA, Chagnon YC, Perusse L, Borecki IB, et al. Genome-wide linkage analysis of systolic and diastolic blood pressure: the Quebec family study. Circulation. 2000;102:1956–63.

    PubMed  CAS  Google Scholar 

  115. Perola M, Kainulainen K, Pajukanta P, Terwillinger JD, Hiekkalinna T, Ellonen P, et al. Genome-wide scan of predisposing loci for increased diastolic blood pressure in Finnish siblings. J Hypertens. 2000;18:1579–85.

    PubMed  CAS  Google Scholar 

  116. Pankow JS, Rose KM, Oberman A, Hunt SC, Atwood LD, Djousse L, et al. Possible locus on chromosome 18q influencing postural systolic blood pressure changes. Hypertension. 2000;36:471–6.

    PubMed  CAS  Google Scholar 

  117. Krushkal J, Ferrell R, Mockrin SC, Turner ST, Sing CF, Boerwinkle E. Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation. 1999;99:1407–10.

    PubMed  CAS  Google Scholar 

  118. Levy D, DeStefano AL, Larson MG, O’Donnell CJ, Lifton RP, Gavras H, et al. Evidence for a gene influencing blood pressure on chromosome 17: genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study. Hypertension. 2000;36:477–83.

    PubMed  CAS  Google Scholar 

  119. Sharma P, Fatibene J, Ferraro F, Jia H, Monteith S, Brown C, et al. A genome-wide search for susceptibility loci to human essential hypertension. Hypertension. 2000;35:1291–6.

    PubMed  CAS  Google Scholar 

  120. Xu X, Rogus JJ, Terwedow HA, Yang J, Wang Z, Chen C, et al. An extreme-sib-pair genome scan for genes regulating blood pressure. Am J Hum Genet. 1999;64:1694–701.

    PubMed  CAS  Google Scholar 

  121. Wang DG, Fan J-B, Siao C-J, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280:1077–82.

    PubMed  CAS  Google Scholar 

  122. The International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;409:928–33.

    Google Scholar 

  123. Harrap SB. Where are all the blood pressure genes? Lancet. 2003;361:2149–51.

    PubMed  CAS  Google Scholar 

  124. Province MA, Kardia SLR, Ranade K, et al. A meta-analysis of genome-wide linkage scans for hypertension: the National Heart Lung and Blood Institute Family Blood Pressure Program. Am J Hypertens. 2003;16:144–7.

    PubMed  Google Scholar 

  125. Caulfield M, Munroe P, Pembroke J, Samani N, Dominiczak A, Brown M, et al. Genome-wide mapping of human loci for essential hypertension. Lancet. 2003;361:2118–23.

    PubMed  CAS  Google Scholar 

  126. Ehret GB, Morrison AC, O’Connor AA, Grove ML, Baird L, Schwander K, et al. Replication of the Wellcome Trust genome-wide association study of essential hypertension: the Family Blood Pressure Program. Eur J Hum Genet. 2008;16:1507–11.

    PubMed  CAS  Google Scholar 

  127. Hong KW, Jin HS, Cho YS, Lee JY, Lee JE, Cho NH, et al. Replication of the Wellcome Trust genome-wide association study on essential hypertension in a Korean population. Hypertens Res. 2009;32:570–4.

    PubMed  Google Scholar 

  128. Izawa H, Yamada Y, Okada T, Tanaka M, Hirayama H, Yokota M. Prediction of genetic risk for hypertension. Hypertension. 2003;41:1035–40.

    PubMed  CAS  Google Scholar 

  129. Binder A. A review of the genetics of essential hypertension. Curr Opin Cardiol. 2007;22:176–84.

    PubMed  Google Scholar 

  130. Hamet P, Seda O. The current status of genome-wide scanning for hypertension. Curr Opin Cardiol. 2007;22:292–7.

    PubMed  Google Scholar 

  131. Martinez-Aguayo A, Fardella C. Genetics of hypertensive syndrome. Horm Res. 2009;71:253–9.

    PubMed  CAS  Google Scholar 

  132. Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang SJ, et al. Framingham Heart study 100 k project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet. 2007;8 Suppl 1:S3.

    PubMed  Google Scholar 

  133. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Google Scholar 

  134. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527–34.

    PubMed  CAS  Google Scholar 

  135. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.

    PubMed  CAS  Google Scholar 

  136. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A. Genome-wide association of blood pressure and hypertension. Nat Genet. 2009;41:677–87.

    PubMed  CAS  Google Scholar 

  137. Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet. 2009;5:e1000564.

    PubMed  Google Scholar 

  138. Delles C, McBride MW, Graham D, Padmanabhan S, Dominiczak AF. Genetics of hypertension: from experimental animals to humans. Biochim Biophys Acta. 1802;2010:1299–308.

    Google Scholar 

  139. Simino J, Rao DC, Freedman BI. Novel findings and future directions on the genetics of hypertension. Curr Opin Nephrol Hypertens. 2012;21(5):500–7.

    PubMed  Google Scholar 

  140. Padmanabhan S, Newton-Cheh C, Dominiczak AF. Genetic basis of blood pressure and hypertension. Trends Genet. 2012;28:397–408.

    PubMed  CAS  Google Scholar 

  141. Braun MC, Doris PA. Mendelian and trans-generational inheritance in hypertensive renal disease. Ann Med. 2012;44 Suppl 1:S65–73.

    PubMed  CAS  Google Scholar 

  142. Hiltunen TP, Kontula K. Clinical and molecular approaches to individualize antihypertensive drug therapy. Ann Med. 2012;44 Suppl 1:S23–9.

    PubMed  CAS  Google Scholar 

  143. Cowley AW, Nadeau JH, Baccarelli A, Berecek K, Fornage M, Gibbons GH, et al. Report of the NHLBI working group on epigenetics and hypertension. 2012; 59: 899–905

    Google Scholar 

  144. El Shamieh S, Visvikis-Siest S. Genetic biomarkers of hypertension and future challenges integrating epigenomics. Clin Chim Acta. 2012;414:259–65.

    PubMed  CAS  Google Scholar 

  145. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet. 2008;40:1175–84.

    PubMed  CAS  Google Scholar 

  146. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329:841–5.

    PubMed  CAS  Google Scholar 

  147. New MI, Crawford C, Virdis R. Low Renin hypertension in childhood. In: Lifshitz F, editor. Pediatric endocrinology, Third Edition, Ch 53, p776

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie R. Ingelfinger M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ingelfinger, J.R. (2013). Monogenic and Polygenic Contributions to Hypertension. In: Flynn, J., Ingelfinger, J., Portman, R. (eds) Pediatric Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-490-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-490-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-489-0

  • Online ISBN: 978-1-62703-490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics