Skip to main content

From a Biological Hypothesis to the Construction of a Mathematical Model

  • Protocol
  • First Online:
In Silico Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1021))

Abstract

Mathematical models serve to explain complex biological phenomena and provide predictions that can be tested experimentally. They can provide plausible scenarios of a complex biological behavior when intuition is not sufficient anymore. The process from a biological hypothesis to a mathematical model might be challenging for biologists that are not familiar with mathematical modeling.

In this chapter we discuss a possible workflow that describes the steps to be taken starting from a biological hypothesis on a biochemical cellular mechanism to the construction of a mathematical model using the appropriate formalism. An important part of this workflow is formalization of biological knowledge, which can be facilitated by existing tools and standards developed by the systems biology community.

This chapter aims at introducing modeling to experts in molecular biology that would like to convert their hypotheses into mathematical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nat Genet 36:664.

    Article  PubMed  CAS  Google Scholar 

  2. Larkin JH, Simon HA (1987) Why a diagram is (sometimes) worth ten thousand words. Cogn Sci 11(1):65–100

    Article  Google Scholar 

  3. Le Novère N, Hucka M, Mi H et al (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735–741. doi:10.1038/nbt.1558

    Article  PubMed  Google Scholar 

  4. Wang PI, Marcotte EM (2010) It’s the machine that matters: predicting gene function and phenotype from protein networks. J Proteomics 73(11):2277–2289

    Article  PubMed  CAS  Google Scholar 

  5. Dixon SJ, Costanzo M, Baryshnikova A et al (2009) Systematic mapping of genetic interaction networks. Annu Rev Genet 43(1):601–625. doi:10.1146/annurev.genet.39.073003.114751

    Article  PubMed  CAS  Google Scholar 

  6. Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565. doi:10.1038/msb.2011.99

    Article  PubMed  Google Scholar 

  7. Przulj N (2011) Protein-protein interactions: making sense of networks via graph-theoretic modeling. Bioessays 33(2):115–123. doi:10.1002/bies.201000044

    Article  PubMed  CAS  Google Scholar 

  8. Schmeier S, Schaefer U, Essack M et al (2011) Network analysis of microRNAs and their regulation in human ovarian cancer. BMC Syst Biol 5:183. doi:10.1186/1752-0509-5-183

    Article  PubMed  CAS  Google Scholar 

  9. Pratt CH, Vadigepalli R, Chakravarthula P et al (2008) Transcriptional regulatory network analysis during epithelial-mesenchymal transformation of retinal pigment epithelium. Mol Vis 14:1414–1428

    PubMed  CAS  Google Scholar 

  10. Cheng C, Yan K-K, Hwang W et al (2011) Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data. PLoS Comput Biol 7(11):e1002190

    Article  PubMed  CAS  Google Scholar 

  11. Calzone L, Gelay A, Zinovyev A et al (2008) A comprehensive modular map of molecular interactions in RB/E2F pathway. Mol Syst Biol 4:174. doi:10.1038/msb.2008.7

    Article  Google Scholar 

  12. Caron E, Ghosh S, Matsuoka Y et al (2010) A comprehensive map of the mTOR signaling network. Mol Syst Biol 6:453. doi:10.1038/msb.2010.108

    Article  PubMed  Google Scholar 

  13. Patil S, Pincas H, Seto J et al (2010) Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase. BMC Syst Biol 4(1):137

    Article  PubMed  Google Scholar 

  14. Kohn KW (1999) Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 10(8):2703–2734

    PubMed  CAS  Google Scholar 

  15. Joshi-Tope G, Gillespie M, Vastrik I et al (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33(Database issue):D428–D432. doi:10.1093/nar/gki072

    Article  PubMed  CAS  Google Scholar 

  16. Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–101; discussion 101–103, 119–128, 244–252

    Google Scholar 

  17. Kitano H, Funahashi A, Matsuoka Y et al (2005) Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 23(8):961–966. doi:10.1038/nbt1111

    Article  PubMed  CAS  Google Scholar 

  18. Czauderna T, Klukas C, Schreiber F (2010) Editing, validating and translating of SBGN maps. Bioinformatics 26(18):2340–2341. doi:10.1093/bioinformatics/btq407

    Article  PubMed  CAS  Google Scholar 

  19. Florez LA, Lammers CR, Michna R et al (2010) Cell Publisher: a web platform for the intuitive visualization and sharing of metabolic, signalling and regulatory pathways. Bioinformatics 26(23):2997–2999. doi:10.1093/bioinformatics/btq585

    Article  PubMed  CAS  Google Scholar 

  20. Kono N, Arakawa K, Ogawa R et al (2009) Pathway projector: web-based zoomable pathway browser using KEGG atlas and Google Maps API. PLoS One 4(11):e7710. doi:10.1371/journal.pone.0007710

    Article  PubMed  Google Scholar 

  21. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432. doi:10.1093/bioinformatics/btq675

    Article  PubMed  CAS  Google Scholar 

  22. Zinovyev A, Viara E, Calzone L et al (2008) BiNoM: a Cytoscape plugin for manipulating and analyzing biological networks. Bioinformatics 24(6):876–877. doi:10.1093/bioinformatics/btm553

    Article  PubMed  CAS  Google Scholar 

  23. Bonnet E, Calzone L, Rovera D, Stoll G, Barillot E, Zinovyev A (2013) BiNoM 2.0, a Cytoscape plugin for accessing and analyzing pathways using standard systems biology formats. BMC Syst Biol 7:18

    Google Scholar 

  24. Bachmann J, Raue A, Schilling M et al (2012) Predictive mathematical models of cancer signalling pathways. J Intern Med 271(2):155–165

    Article  PubMed  CAS  Google Scholar 

  25. Ay A, Arnosti DN (2011) Mathematical modeling of gene expression: a guide for the perplexed biologist. Crit Rev Biochem Mol Biol 46(2):137–151. doi:10.3109/10409238.2011.556597

    Article  PubMed  Google Scholar 

  26. Morris MK, Saez-Rodriguez J, Sorger PK et al (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49(15):3216–3224

    Article  PubMed  CAS  Google Scholar 

  27. Karlebach G, Shamir R (2008) Modeling and analysis of regulatory networks. Nat Rev Mol Cell Biol 9:771–780. doi:10.1038/nrm2503

    Article  Google Scholar 

  28. Calzone L, Tournier L, Fourquet S et al (2010) Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol 6(3):e1000702

    Article  PubMed  Google Scholar 

  29. Philippi N, Walter D, Schlatter R et al (2009) Modeling system states in liver cells: survival, apoptosis and their modifications in response to viral infection. BMC Syst Biol 3:97. doi:10.1186/1752-0509-3-97

    Article  PubMed  Google Scholar 

  30. Saez-Rodriguez J, Alexopoulos LG, Zhang M et al (2011) Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Res 71(16):5400–5411. doi:10.1158/0008-5472.CAN-10-4453

    Article  PubMed  CAS  Google Scholar 

  31. Schlatter R, Schmich K, Avalos Vizcarra I et al (2009) ON/OFF and beyond–a Boolean model of apoptosis. PLoS Comput Biol 5(12):e1000595. doi:10.1371/journal.pcbi.1000595

    Article  PubMed  Google Scholar 

  32. Britton NF (1986) Reaction–diffusion equations and their applications to biology. Academic, London

    Google Scholar 

  33. Hegland M, Burden C, Santoso L et al (2007) A solver for the stochastic master equation applied to gene regulatory networks. J Comput Appl Math 205(2):708–724. doi:10.1016/j.cam.2006.02.053

    Article  Google Scholar 

  34. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2(2):103–112. doi:10.1016/S1535-6108(02)00102-2

    Article  PubMed  CAS  Google Scholar 

  35. Polager S, Ginsberg D (2008) E2F at the crossroads of life and death. Trends Cell Biol 18(11):528–535. doi:10.1016/j.tcb.2008.08.003

    Article  PubMed  CAS  Google Scholar 

  36. Calzone L, Fages F, Soliman S (2006) BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14):1805–1807. doi:10.1093/bioinformatics/btl172

    Article  PubMed  CAS  Google Scholar 

  37. Vass M, Allen N, Shaffer CA, Ramakrishnan N, Watson LT, Tyson JJ (2004) The JigCell model builder and run manager. Bioinformatics 20(18):3680–3681

    Google Scholar 

  38. Funahashi A, Matsuoka Y, Jouraku A et al (2008) Cell Designer 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 96(8):1254–1265

    Article  Google Scholar 

  39. Schmidt H, Jirstrand M (2006) Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 22(4):514–515. doi:10.1093/bioinformatics/bti799

    Article  PubMed  CAS  Google Scholar 

  40. Aguda BD, Tang Y (1999) The kinetic origins of the restriction point in the mammalian cell cycle. Cell Prolif 32(5):321–335

    Article  PubMed  CAS  Google Scholar 

  41. Qu Z, Weiss JN, MacLellan WR (2003) Regulation of the mammalian cell cycle: a model of the G1-to-S transition. Am J Physiol Cell Physiol 284(2):C349–C364. doi:10.1152/ajpcell.00066.2002

    Article  PubMed  CAS  Google Scholar 

  42. Novak B, Tyson JJ (2004) A model for restriction point control of the mammalian cell cycle. J Theor Biol 230(4):563–579. doi:10.1016/j.jtbi.2004.04.039

    Article  PubMed  CAS  Google Scholar 

  43. Gonzalez AG, Naldi A, Sanchez L et al (2006) GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. Biosystems 84(2):91–100. doi:10.1016/j.biosystems.2005.10.003

    Article  PubMed  CAS  Google Scholar 

  44. Mussel C, Hopfensitz M, Kestler HA (2010) BoolNet–an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10):1378–1380. doi:10.1093/bioinformatics/btq124

    Article  PubMed  Google Scholar 

  45. Klamt S, Saez-Rodriguez J, Gilles E (2007) Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol 1(1):2

    Article  PubMed  Google Scholar 

  46. Stoll G, Viara E, Barillot E et al (2012) Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm. BMC Syst Biol 6:116. doi:10.1186/1752-0509-6-116

    Article  PubMed  Google Scholar 

  47. Faure A, Naldi A, Chaouiya C et al (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14):e124–e131. doi:10.1093/bioinformatics/btl210

    Article  PubMed  CAS  Google Scholar 

  48. Barillot E, Calzone L, Hupe P, Vert J-P, Zinovyev A (2012) Computational systems biology of cancer. Chapman & Hall, CRC Mathematical & Computational Biology 452 p.

    Google Scholar 

Download references

Acknowledgements

We are grateful for receiving funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n°259348. DC, IK, EB, AZ, and LC are members of the team “Computational Systems Biology of Cancer” Equipe labellisée par la Ligue Nationale Contre le Cancer. We would also like to thank Nicolas Le Novère for discussions on different types of diagrams and for providing Fig. 1.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cohen, D., Kuperstein, I., Barillot, E., Zinovyev, A., Calzone, L. (2013). From a Biological Hypothesis to the Construction of a Mathematical Model. In: Schneider, M. (eds) In Silico Systems Biology. Methods in Molecular Biology, vol 1021. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-450-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-450-0_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-449-4

  • Online ISBN: 978-1-62703-450-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics