Skip to main content

Methods to Assess Myc Function in Intestinal Homeostasis, Regeneration, and Tumorigenesis

  • Protocol
  • First Online:
The Myc Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1012))

Abstract

Within the intestinal epithelium, c-Myc has been characterized as a target of β-catenin-TCF signalling (He et al., Science 281:1509–1512, 1998). Given the most commonly mutated tumor suppressor gene within colorectal cancer (CRC) is the APC (Adenomatous Polyposis Coli) gene, a negative regulator of β-catenin-TCF signalling (Korinek et al., Science 275:1784–1787, 1997), loss of APC leads to Myc deregulation in the vast majority of CRC. This probably explains the numerous studies investigating c-Myc function within the intestinal epithelium. These have shown that c-Myc inhibition or deletion in the adult intestine results in proliferative defects (Muncan et al., Mol Cell Biol 26:8418–8426, 2006; Soucek et al., Nature 455:679–683, 2008). Importantly, intestinal enterocytes are able to survive in the absence of c-Myc which has allowed us (and others) to test the role of c-Myc in intestinal regeneration and tumorigenesis. Remarkably c-Myc deletion suppresses all the phenotypes of the Apc tumor suppressor gene loss and stops intestinal regeneration (Ashton et al., Dev Cell 19:259–269, 2010; Sansom et al., Oncogene 29:2585–2590, 2007). This suggests a clear therapeutic rationale for targeting c-Myc in CRC. Moreover haploinsufficiency for c-Myc in this tissue also reduces intestinal tumorigenesis (Athineos and Sansom, Oncogene 29:2585–2590, 2010; Yekkala and Baudino, Mol Cancer Res 5:1296–1303, 2007), and overexpression of c-Myc affects tissue homeostasis (Finch et al., Mol Cell Biol 29:5306–5315, 2009; Murphy et al., Cancer Cell 14:447–457, 2008).

In this chapter we will provide an overview of our current laboratory protocols to characterize c-Myc function in intestinal homeostasis, regeneration, and tumorigenesis in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  2. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275:1784–1787

    Article  PubMed  CAS  Google Scholar 

  3. Muncan V, Sansom OJ, Tertoolen L, Phesse TJ, Begthel H, Sancho E, Cole AM, Gregorieff A, de Alboran IM, Clevers H, Clarke AR (2006) Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol Cell Biol 26:8418–8426

    Article  PubMed  CAS  Google Scholar 

  4. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683

    Article  PubMed  CAS  Google Scholar 

  5. Ashton GH, Morton JP, Myant K, Phesse TJ, Ridgway RA, Marsh V, Wilkins JA, Athineos D, Muncan V, Kemp R, Neufeld K, Clevers H, Brunton V, Winton DJ, Wang X, Sears RC, Clarke AR, Frame MC, Sansom OJ (2010) Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling. Dev Cell 19:259–269

    Article  PubMed  CAS  Google Scholar 

  6. Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR, Vass JK, Athineos D, Clevers H, Clarke AR (2007) Myc deletion rescues Apc deficiency in the small intestine. Nature 446:676–679

    Article  PubMed  CAS  Google Scholar 

  7. Athineos D, Sansom OJ (2010) Myc heterozygosity attenuates the phenotypes of APC deficiency in the small intestine. Oncogene 29:2585–2590

    Article  PubMed  CAS  Google Scholar 

  8. Yekkala K, Baudino TA (2007) Inhibition of intestinal polyposis with reduced angiogenesis in ApcMin/+ mice due to decreases in c-Myc expression. Mol Cancer Res 5:1296–1303

    Article  PubMed  CAS  Google Scholar 

  9. Finch AJ, Soucek L, Junttila MR, Swigart LB, Evan GI (2009) Acute overexpression of Myc in intestinal epithelium recapitulates some but not all the changes elicited by Wnt/beta-catenin pathway activation. Mol Cell Biol 29:5306–5315

    Article  PubMed  CAS  Google Scholar 

  10. Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA, Brown-Swigart L, Johnson L, Evan GI (2008) Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 14:447–457

    Article  PubMed  CAS  Google Scholar 

  11. Sansom OJ, Clarke AR (2002) The ability to engage enterocyte apoptosis does not predict long-term crypt survival in p53 and Msh2 deficient mice. Oncogene 21:5934–5939

    Article  PubMed  CAS  Google Scholar 

  12. Ijiri K, Potten CS (1986) Radiation-hypersensitive cells in small intestinal crypts; their relationships to clonogenic cells. Br J Cancer Suppl 7:20–22

    PubMed  CAS  Google Scholar 

  13. Ijiri K, Potten CS (1987) Further studies on the response of intestinal crypt cells of different hierarchical status to eighteen different cytotoxic agents. Br J Cancer 55:113–123

    Article  PubMed  CAS  Google Scholar 

  14. Potten CS (1984) Clonogenic, stem and carcinogen-target cells in small intestine. Scand J Gastroenterol Suppl 104:3–14

    PubMed  CAS  Google Scholar 

  15. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2009) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418

    Article  Google Scholar 

  16. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    Article  PubMed  CAS  Google Scholar 

  17. Lewis A, Segditsas S, Deheragoda M, Pollard P, Jeffery R, Nye E, Lockstone H, Davis H, Clark S, Stamp G, Poulsom R, Wright N, Tomlinson I (2010) Severe polyposis in Apc(1322T) mice is associated with submaximal Wnt signalling and increased expression of the stem cell marker Lgr5. Gut 59:1680–1686

    Article  PubMed  CAS  Google Scholar 

  18. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, Gould KA, Dove WF (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256:668–670

    Article  PubMed  CAS  Google Scholar 

  19. Tseng W, Leong X, Engleman E (2007) Orthotopic mouse model of colorectal cancer. J Vis Exp 484

    Google Scholar 

  20. Sansom OJ, Meniel V, Wilkins JA, Cole AM, Oien KA, Marsh V, Jamieson TJ, Guerra C, Ashton GH, Barbacid M, Clarke AR (2006) Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci USA 103:14122–14127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the European Union Seventh Framework Programme FP7/2007–2013 under grant agreement number 2785668 and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Huels, D.J., Cammareri, P., Ridgway, R.A., Medema, J.P., Sansom, O.J. (2013). Methods to Assess Myc Function in Intestinal Homeostasis, Regeneration, and Tumorigenesis. In: Soucek, L., Sodir, N. (eds) The Myc Gene. Methods in Molecular Biology, vol 1012. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-429-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-429-6_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-428-9

  • Online ISBN: 978-1-62703-429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics