Skip to main content

Genetically Modified Stem Cells for Transplantation

  • Chapter
  • First Online:
Emerging Trends in Cell and Gene Therapy
  • 2108 Accesses

Abstract

Critical Challenges: Stem cell therapies are based on a simplistic idea of harvesting stem cells from bone marrow, adipose tissue, or induced pluripotent stem cells and injecting them into tissue that requires regeneration. Such ideas are logical and appealing. The only problem is they do not work very well. Effects of stem cell therapy are modest at best and often neither effective nor long lasting. This is because injected stem cells do not survive long. These cells are taken from their comfortable niches and forced to enter a hostile environment of low oxygen, poor nutrients, attacks by immune cells, and the apoptotic agents of death.

Current Research Directions: To reach past this impasse, the emerging trend is genetic modification of stem cells for protection and facilitation. Stem cells can be modified to withstand apoptosis and inflammation and even be activated by low oxygen to switch on protective genes to make them survive longer as grafts. Stem cells can be genetically modified to deliver hormones, growth factors, and homing factors. There are multiple methods for modification from gene signaling, antisense inhibition, microRNAs, and inserting transgene switches.

Discussion of Specific Examples: Here we discuss examples of gene modification of stem cells for survival after transplantation, turning cells into insulin-producing cells, cells that could reduce plaque in Alzheimer’s and at the same time repair lost neural tissue. Genetically modified stem cells could be a new step forward in stem cell therapy when designed to improve their utility in treating myocardial ischemia and heart failure, hemophilia, stroke, diabetes type 1, spinal cord injury, Alzheimer’s and Parkinson’s diseases, bone defects, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KBS, Ismail Virag J, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668. doi:10.1038/nature02446

    PubMed  CAS  Google Scholar 

  2. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673. doi:10.1038/nature02460

    PubMed  CAS  Google Scholar 

  3. Tang YL, Shen L, Qian K, Phillips MI (2007) A novel two-step procedure to expand cardiac ­Sca-1+ cells clonally. Biochem Biophys Res Commun 359:877–883. doi:10.1016/j.bbrc.2007.05.216

    PubMed  CAS  Google Scholar 

  4. Phillips MI, Tang YL (2008) Genetic modification of stem cells for transplantation. Adv Drug Deliv Rev 60:160–172. doi:10.1016/j.addr.2007.08.035

    PubMed  CAS  Google Scholar 

  5. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MVG, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921. doi:10.1161/01.RES.0000147315.71699.51

    PubMed  CAS  Google Scholar 

  6. Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165. doi:10.1016/j.cell.2006.10.029

    PubMed  CAS  Google Scholar 

  7. Anderson DJ, Gage FH, Weissman IL (2001) Can stem cells cross lineage boundaries? Nat Med 7:393–395. doi:10.1038/86439

    PubMed  CAS  Google Scholar 

  8. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi:10.1016/j.cell.2007.11.019

    PubMed  CAS  Google Scholar 

  9. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801. doi:10.1126/science.1172482

    PubMed  CAS  Google Scholar 

  10. Androutsellis-Theotokis A (2010) Angiogenic factors stimulate growth of adult neural stem cells. ONE Alerts. doi:10.1371/journal.pone.0009414

  11. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660. doi:10.1016/j.cell.2008.01.033

    PubMed  CAS  Google Scholar 

  12. Wang Y, O’Malley BW, Tsai SY, O’Malley BW (1994) A regulatory system for use in gene transfer. Proc Natl Acad Sci 91:8180–8184

    PubMed  CAS  Google Scholar 

  13. Tang Y, Jackson M, Qian K, Phillips MI (2002) Hypoxia inducible double plasmid system for myocardial ischemia gene therapy. Hypertension 39:695–698. doi:10.1161/hy0202.103784

    PubMed  CAS  Google Scholar 

  14. Phillips MI, Tang Y, Schmidt-Ott K, Qian K, Kagiyama S (2002) Vigilant vector: heart-specific promoter in an adeno-associated virus vector for cardioprotection. Hypertension 39:651–655. doi:10.1161/hy0202.103472

    PubMed  CAS  Google Scholar 

  15. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221. doi:10.1126/science.1158799

    PubMed  CAS  Google Scholar 

  16. Chang C, Lai Y, Pawlik KM, Liu K, Sun C, Li C, Schoeb TR, Townes TM (2009) Polycistronic lentiviral vector for “Hit and Run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27:1042–1049. doi:10.1002/stem.39

    PubMed  CAS  Google Scholar 

  17. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949. doi:10.1126/science.1162494

    PubMed  CAS  Google Scholar 

  18. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199. doi:10.1038/nmeth.1426

    PubMed  CAS  Google Scholar 

  19. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770. doi:10.1038/nature07863

    PubMed  CAS  Google Scholar 

  20. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630. doi:10.1016/j.stem.2010.08.012

    PubMed  CAS  Google Scholar 

  21. Marshall E (1999) Gene therapy death prompts review of adenovirus vector. Science 286:2244–2245. doi:10.1126/science.286.5448.2244

    PubMed  CAS  Google Scholar 

  22. Maguire AM, Simonelli F, Pierce EA, Pugh EN, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell’Osso L, Hertle R, Ma J, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248. doi:10.1056/NEJMoa0802315

    PubMed  CAS  Google Scholar 

  23. Phillips MI, Oliveira EM (2011) Associated adeno virus vector for producing induced pluripotent stem cells (IPS) for human somatic cells. In: Gholamrezanezhad A (ed) Stem cells in clinic and research. InTech, Rijeka, pp 747–764

    Google Scholar 

  24. Smithies O (2005) Many little things: one geneticist’s view of complex diseases. Nat Rev Genet 6:419–425. doi:10.1038/nrg1605

    PubMed  CAS  Google Scholar 

  25. Gu H, Marth J, Orban P, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265:103–106. doi:10.1126/science.8016642

    PubMed  CAS  Google Scholar 

  26. Sinnayah P, Lindley TE, Staber PD, Davidson BL, Cassell MD, Davisson RL (2004) Targeted viral delivery of Cre recombinase induces conditional gene deletion in cardiovascular circuits of the mouse brain. Physiol Genomics 18:25–32. doi:10.1152/physiolgenomics.00048.2004

    PubMed  CAS  Google Scholar 

  27. Sakai K, Agassandian K, Morimoto S, Sinnayah P, Cassell MD, Davisson RL, Sigmund CD (2007) Local production of angiotensin II in the subfornical organ causes elevated drinking. J Clin Invest 117:1088–1095. doi:10.1172/JCI31242

    PubMed  CAS  Google Scholar 

  28. Phillips MI (2004) A Cre-loxP solution for defining the brain renin-angiotensin system. Focus on “Targeted viral delivery of Cre recombinase induces conditional gene deletion in cardiovascular circuits of the mouse brain”. Physiol Genomics 18:1–3. doi:10.1152/physiolgenomics.00115.2004

    PubMed  CAS  Google Scholar 

  29. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci 75:280–284

    PubMed  CAS  Google Scholar 

  30. Wahlestedt C, Pich E, Koob G, Yee F, Heilig M (1993) Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science 259:528–531. doi:10.1126/science.8380941

    PubMed  CAS  Google Scholar 

  31. Gyurko R, Wielbo D, Ian Phillips M (1993) Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul Pept 49:167–174. doi:10.1016/0167-0115(93)90438-E

    PubMed  CAS  Google Scholar 

  32. Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95. doi:10.1146/annurev.med.55.091902.104408

    PubMed  CAS  Google Scholar 

  33. Kimura B, Mohuczy D, Tang X, Phillips MI (2001) Attenuation of hypertension and heart hypertrophy by adeno-associated virus delivering angiotensinogen antisense. Hypertension 37:376–380. doi:10.1161/01.HYP.37.2.376

    PubMed  CAS  Google Scholar 

  34. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. doi:10.1038/35888

    PubMed  CAS  Google Scholar 

  35. Arnold AS, Tang YL, Qian K, Shen L, Valencia V, Phillips MI, Zhang YC (2007) Specific beta1-adrenergic receptor silencing with small interfering RNA lowers high blood pressure and improves cardiac function in myocardial ischemia. J Hypertens 25:197–205. doi:10.1097/01.hjh.0000254374.73241.ab

    PubMed  CAS  Google Scholar 

  36. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    PubMed  CAS  Google Scholar 

  37. Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6:259–269. doi:10.1038/nrc1840

    PubMed  CAS  Google Scholar 

  38. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    PubMed  CAS  Google Scholar 

  39. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677. doi:10.1038/ng2003

    PubMed  CAS  Google Scholar 

  40. Henderson SA, Spencer M, Sen A, Kumar C, Siddiqui MA, Chien KR (1989) Structure, organization, and expression of the rat cardiac myosin light chain-2 gene. Identification of a 250-base pair fragment which confers cardiac-specific expression. J Biol Chem 264:18142–18148

    PubMed  CAS  Google Scholar 

  41. Rincon-Arano H, Valadez-Graham V, Guerrero G, Escamilla-Del-Arenal M, Recillas-Targa F (2005) YY1 and GATA-1 interaction modulate the chicken 3′-side alpha-globin enhancer activity. J Mol Biol 349:961–975. doi:10.1016/j.jmb.2005.04.040

    PubMed  CAS  Google Scholar 

  42. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    PubMed  CAS  Google Scholar 

  43. No D, Yao TP, Evans RM (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci USA 93:3346–3351

    PubMed  CAS  Google Scholar 

  44. Pollock R, Issner R, Zoller K, Natesan S, Rivera VM, Clackson T (2000) Delivery of a stringent dimerizer-regulated gene expression system in a single retroviral vector. Proc Natl Acad Sci USA 97:13221–13226. doi:10.1073/pnas.230446297

    PubMed  CAS  Google Scholar 

  45. Tang Y, Schmitt-Ott K, Qian K, Kagiyama S, Phillips MI (2002) Vigilant vectors: adeno-associated virus with a biosensor to switch on amplified therapeutic genes in specific tissues in life-threatening diseases. Methods 28:259–266

    PubMed  CAS  Google Scholar 

  46. Semenza GL (2004) O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol 96:1173–1177. doi:10.1152/japplphysiol.00770.2003

    PubMed  CAS  Google Scholar 

  47. Tang YL, Tang Y, Zhang YC, Agarwal A, Kasahara H, Qian K, Shen L, Phillips MI (2005) A hypoxia-inducible vigilant vector system for activating therapeutic genes in ischemia. Gene Ther 12:1163–1170. doi:10.1038/sj.gt.3302513

    PubMed  CAS  Google Scholar 

  48. Mingliang R, Bo Z, Zhengguo W (2011) Stem cells for cardiac repair: status, mechanisms, and new strategies. Stem Cells Int 2011:310928. doi:10.4061/2011/310928

    PubMed  Google Scholar 

  49. Tang YL, Zhu W, Cheng M, Chen L, Zhang J, Sun T, Kishore R, Phillips MI, Losordo DW, Qin G (2009) Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 104:1209–1216. doi:10.1161/CIRCRESAHA.109.197723

    PubMed  CAS  Google Scholar 

  50. Suzuki K, Smolenski RT, Jayakumar J, Murtuza B, Brand NJ, Yacoub MH (2000) Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation 102:III216–III221

    PubMed  CAS  Google Scholar 

  51. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    PubMed  CAS  Google Scholar 

  52. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, Dzau VJ (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9:1195–1201. doi:10.1038/nm912

    PubMed  CAS  Google Scholar 

  53. Meuillet EJ, Mahadevan D, Vankayalapati H, Berggren M, Williams R, Coon A, Kozikowski AP, Powis G (2003) Specific inhibition of the Akt1 pleckstrin homology domain by D-3-deoxy-phosphatidyl-myo-inositol analogues. Mol Cancer Ther 2:389–399

    PubMed  CAS  Google Scholar 

  54. Otterbein LE, Choi AMK (2000) Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 279:L1029–L1037

    PubMed  CAS  Google Scholar 

  55. Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46:1339–1350. doi:10.1016/j.jacc.2005.05.079

    PubMed  CAS  Google Scholar 

  56. Lenfant C (1998) NHLBI at 50: reflections on a half-century of research on the heart, lungs, and blood. National Heart, Lung, and Blood Institute. Interview by Charles Marwick. JAMA 280:2062–2064

    PubMed  CAS  Google Scholar 

  57. Koransky ML, Robbins RC, Blau HM (2002) VEGF gene delivery for treatment of ischemic cardiovascular disease. Trends Cardiovasc Med 12:108–114

    PubMed  CAS  Google Scholar 

  58. Tang YL, Zhao Q, Zhang YC, Cheng L, Liu M, Shi J, Yang YZ, Pan C, Ge J, Phillips MI (2004) Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept 117:3–10

    PubMed  CAS  Google Scholar 

  59. Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J, Phillips MI (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80:229–236. doi:10.1016/j.athoracsur.2005.02.072; discussion 236–237

    PubMed  Google Scholar 

  60. Lange C, Bassler P, Lioznov MV, Bruns H, Kluth D, Zander AR, Fiegel HC (2005) Hepatocytic gene expression in cultured rat mesenchymal stem cells. Transplant Proc 37:276–279. doi:10.1016/j.transproceed.2004.11.087

    PubMed  CAS  Google Scholar 

  61. Elmadbouh I, Haider HK, Jiang S, Idris NM, Lu G, Ashraf M (2007) Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J Mol Cell Cardiol 42:792–803. doi:10.1016/j.yjmcc.2007.02.001

    PubMed  CAS  Google Scholar 

  62. Lei Y, Haider HK, Shujia J, Sim ES (2004) Therapeutic angiogenesis. Devising new strategies based on past experiences. Basic Res Cardiol 99:121–132. doi:10.1007/s00395-004-0447-x

    PubMed  Google Scholar 

  63. Moayeri M, Hawley TS, Hawley RG (2005) Correction of murine hemophilia A by hematopoietic stem cell gene therapy. Mol Ther 12:1034–1042. doi:10.1016/j.ymthe.2005.09.007

    PubMed  CAS  Google Scholar 

  64. Gangadharan B, Parker ET, Ide LM, Spencer HT, Doering CB (2006) High-level expression of porcine factor VIII from genetically modified bone marrow–derived stem cells. Blood 107:3859–3864. doi:10.1182/blood-2005-12-4961

    PubMed  CAS  Google Scholar 

  65. Lavon N, Yanuka O, Benvenisty N (2006) The effect of overexpression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells. Stem Cells 24:1923–1930. doi:10.1634/stemcells.2005-0397

    PubMed  CAS  Google Scholar 

  66. Ang SL, Wierda A, Wong D, Stevens KA, Cascio S, Rossant J, Zaret KS (1993) The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119:1301–1315

    PubMed  CAS  Google Scholar 

  67. Chakrabarti SK, Mirmira RG (2003) Transcription factors direct the development and function of pancreatic beta cells. Trends Endocrinol Metab 14:78–84

    PubMed  CAS  Google Scholar 

  68. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H (1998) β-Cell-specific inactivation of the mouseIpf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev 12:1763–1768. doi:10.1101/gad.12.12.1763

    PubMed  CAS  Google Scholar 

  69. Wang J, Elghazi L, Parker SE, Kizilocak H, Asano M, Sussel L, Sosa-Pineda B (2004) The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell differentiation. Dev Biol 266:178–189

    PubMed  CAS  Google Scholar 

  70. Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci 99:9864–9869. doi:10.1073/pnas.142298299

    PubMed  CAS  Google Scholar 

  71. Tang DQ, Lu S, Sun YP, Rodrigues E, Chou W, Yang C, Cao LZ, Chang LJ, Yang LJ (2006) Reprogramming liver-stem WB cells into functional insulin-producing cells by persistent expression of Pdx1- and Pdx1-VP16 mediated by lentiviral vectors. Lab Invest 86:83–93. doi:10.1038/labinvest.3700368

    PubMed  CAS  Google Scholar 

  72. Li Y, Zhang R, Qiao H, Zhang H, Wang Y, Yuan H, Liu Q, Liu D, Chen L, Pei X (2007) Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol 211:36–44. doi:10.1002/jcp.20897

    PubMed  CAS  Google Scholar 

  73. Noguchi H, Xu G, Matsumoto S, Kaneto H, Kobayashi N, Bonner-Weir S, Hayashi S (2006) Induction of pancreatic stem/progenitor cells into insulin-producing cells by adenoviral-mediated gene transfer technology. Cell Transplant 15:929–938

    PubMed  Google Scholar 

  74. Cheng H, Zhang YC, Wolfe S, Valencia V, Qian K, Shen L, Tang YL, Hsu WH, Atkinson MA, Phillips MI (2011) Combinatorial treatment of bone marrow stem cells and stromal cell-derived factor 1 improves glycemia and insulin production in diabetic mice. Mol Cell Endocrinol 345:88–96. doi:10.1016/j.mce.2011.07.024

    PubMed  CAS  Google Scholar 

  75. Dinsmore J, Ratliff J, Deacon T, Pakzaban P, Jacoby D, Galpern W, Isacson O (1996) Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplant 5:131–143

    PubMed  CAS  Google Scholar 

  76. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412. doi:10.1038/70986

    PubMed  CAS  Google Scholar 

  77. Tang X, Cai PQ, Lin YQ, Oudega M, Blits B, Xu L, Yang YK, Zhou TH (2006) Genetic engineering neural stem cell modified by lentivirus for repair of spinal cord injury in rats. Chin Med Sci J 21:120–124

    PubMed  CAS  Google Scholar 

  78. Cai PQ, Tang X, Lin YQ, Martin O, Sun GY, Xu L, Yang YK, Zhou TH (2006) The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene. Chin J Traumatol 9:43–49

    PubMed  CAS  Google Scholar 

  79. Blits B, Kitay BM, Farahvar A, Caperton CV, Dietrich WD, Bunge MB (2005) Lentiviral vector-mediated transduction of neural progenitor cells before implantation into injured spinal cord and brain to detect their migration, deliver neurotrophic factors and repair tissue. Restor Neurol Neurosci 23:313–324

    PubMed  CAS  Google Scholar 

  80. Coutts M, Keirstead HS (2008) Stem cells for the treatment of spinal cord injury. Exp Neurol 209:368–377. doi:10.1016/j.expneurol.2007.09.002

    PubMed  CAS  Google Scholar 

  81. Lakshminarayan K, Schissel C, Anderson DC, Vazquez G, Jacobs DR Jr, Ezzeddine M, Luepker RV, Virnig BA (2011) Five-year rehospitalization outcomes in a cohort of patients with acute ischemic stroke: medicare linkage study. Stroke. doi:10.1161/STROKEAHA.110.605600

  82. Eglitis MA, Mezey É (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci 94:4080–4085

    PubMed  CAS  Google Scholar 

  83. Brazelton TR, Rossi FMV, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779. doi:10.1126/science.290.5497.1775

    PubMed  CAS  Google Scholar 

  84. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M (2001) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189:49–57

    PubMed  CAS  Google Scholar 

  85. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M (2002) Human marrow stromal cell therapy for stroke in rat. Neurology 59:514–523

    PubMed  CAS  Google Scholar 

  86. Iihoshi S, Honmou O, Houkin K, Hashi K, Kocsis JD (2004) A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Res 1007:1–9. doi:10.1016/j.brainres.2003.09.084

    PubMed  CAS  Google Scholar 

  87. Baker AH, Sica V, Work LM, Williams-Ignarro S, de Nigris F, Lerman LO, Casamassimi A, Lanza A, Schiano C, Rienzo M, Ignarro LJ, Napoli C (2007) Brain protection using autologous bone marrow cell, metalloproteinase inhibitors, and metabolic treatment in cerebral ischemia. Proc Natl Acad Sci USA 104:3597–3602. doi:10.1073/pnas.0611112104

    PubMed  CAS  Google Scholar 

  88. Kobune M, Kawano Y, Ito Y, Chiba H, Nakamura K, Tsuda H, Sasaki K, Dehari H, Uchida H, Honmou O, Takahashi S, Bizen A, Takimoto R, Matsunaga T, Kato J, Kato K, Houkin K, Niitsu Y, Hamada H (2003) Telomerized human multipotent mesenchymal cells can differentiate into hematopoietic and cobblestone area-supporting cells. Exp Hematol 31:715–722

    PubMed  CAS  Google Scholar 

  89. Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256:271–282

    PubMed  CAS  Google Scholar 

  90. Jiang XR, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M, Beeche M, Bodnar AG, Wahl GM, Tlsty TD, Chiu CP (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet 21:111–114. doi:10.1038/5056

    PubMed  CAS  Google Scholar 

  91. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352. doi:10.1126/science.279.5349.349

    PubMed  CAS  Google Scholar 

  92. Honma T, Honmou O, Iihoshi S, Harada K, Houkin K, Hamada H, Kocsis JD (2006) Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol 199:56–66. doi:10.1016/j.expneurol.2005.05.004

    PubMed  CAS  Google Scholar 

  93. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64. doi:10.1016/j.expneurol.2005.10.029

    PubMed  CAS  Google Scholar 

  94. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2004) BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 9:189–197. doi:10.1016/j.ymthe.2003.10.012

    PubMed  CAS  Google Scholar 

  95. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11:96–104. doi:10.1016/j.ymthe.2004.09.020

    PubMed  CAS  Google Scholar 

  96. Schwarz EJ, Alexander GM, Prockop DJ, Azizi SA (1999) Multipotential marrow stromal cells transduced to produce L-DOPA: engraftment in a rat model of Parkinson disease. Hum Gene Ther 10:2539–2549. doi:10.1089/10430349950016870

    PubMed  CAS  Google Scholar 

  97. Schwarz EJ, Reger RL, Alexander GM, Class R, Azizi SA, Prockop DJ (2001) Rat marrow stromal cells rapidly transduced with a self-inactivating retrovirus synthesize L-DOPA in vitro. Gene Ther 8:1214–1223. doi:10.1038/sj.gt.3301517

    PubMed  CAS  Google Scholar 

  98. Shen Y, Muramatsu SI, Ikeguchi K, Fujimoto KI, Fan DS, Ogawa M, Mizukami H, Urabe M, Kume A, Nagatsu I, Urano F, Suzuki T, Ichinose H, Nagatsu T, Monahan J, Nakano I, Ozawa K (2000) Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson’s disease. Hum Gene Ther 11:1509–1519. doi:10.1089/10430340050083243

    PubMed  CAS  Google Scholar 

  99. Sun M, Kong L, Wang X, Holmes C, Gao Q, Zhang GR, Pfeilschifter J, Goldstein DS, Geller AI (2004) Coexpression of tyrosine hydroxylase, GTP cyclohydrolase I, aromatic amino acid decarboxylase, and vesicular monoamine transporter 2 from a helper virus-free herpes simplex virus type 1 vector supports high-level, long-term biochemical and behavioral correction of a rat model of Parkinson’s disease. Hum Gene Ther 15:1177–1196. doi:10.1089/hum.2004.15.1177

    PubMed  Google Scholar 

  100. Fisher LJ, Raymon HK, Gage FH (1993) Cells engineered to produce acetylcholine: therapeutic potential for Alzheimer’s disease. Ann N Y Acad Sci 695:278–284

    PubMed  CAS  Google Scholar 

  101. Park D, Lee HJ, Joo SS, Lim I, Matsumoto A, Tooyama I, Kim YB, Kim SU (2012) Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol. doi:10.1016/j.expneurol.2011.12.040

  102. Lad SP, Neet KE, Mufson EJ (2003) Nerve growth factor: structure, function and therapeutic implications for Alzheimer’s disease. Curr Drug Targets CNS Neurol Disord 2:315–334

    PubMed  CAS  Google Scholar 

  103. Tuszynski MH, Thal L, Pay M, Salmon DP, U HS, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG, Fallon J, Hansen L, Mufson EJ, Kordower JH, Gall C, Conner J (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555. doi:10.1038/nm1239

    PubMed  CAS  Google Scholar 

  104. Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee H, Saido TC (2001) Metabolic regulation of brain Aβ by neprilysin. Science 292:1550–1552. doi:10.1126/science.1059946

    PubMed  CAS  Google Scholar 

  105. Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223:267–281. doi:10.1016/j.expneurol.2009.08.009

    PubMed  CAS  Google Scholar 

  106. Hemming ML, Patterson M, Reske-Nielsen C, Lin L, Isacson O, Selkoe DJ (2007) Reducing amyloid plaque burden via ex vivo gene delivery of an Abeta-degrading protease: a novel therapeutic approach to Alzheimer disease. PLoS Med 4:e262. doi:10.1371/journal.pmed.0040262

    PubMed  Google Scholar 

  107. Magga J, Savchenko E, Malm T, Rolova T, Pollari E, Valonen P, Lehtonen Š, Jantunen E, Aarnio J, Lehenkari P, Koistinaho M, Muona A, Koistinaho J (2011) Production of monocytic cells from bone marrow stem cells: therapeutic usage in Alzheimer’s disease. J Cell Mol Med 16:1582–1838. doi:10.1111/j.1582-4934.2011.01390.x

    Google Scholar 

  108. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S (1998) Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 16:155–162. doi:10.1002/jor.1100160202

    PubMed  CAS  Google Scholar 

  109. Gazit D, Turgeman G, Kelley P, Wang E, Jalenak M, Zilberman Y, Moutsatsos I (1999) Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med 1:121–133. doi:10.1002/(SICI)1521-2254(199903/04)1:2<121::AID-JGM26>3.0.CO;2-J

    PubMed  CAS  Google Scholar 

  110. Moutsatsos IK, Turgeman G, Zhou S, Kurkalli BG, Pelled G, Tzur L, Kelley P, Stumm N, Mi S, Muller R, Zilberman Y, Gazit D (2001) Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther 3:449–461. doi:10.1006/mthe.2001.0291

    PubMed  CAS  Google Scholar 

  111. Hasharoni A, Zilberman Y, Turgeman G, Helm GA, Liebergall M, Gazit D (2005) Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. J Neurosurg Spine 3:47–52. doi:10.3171/spi.2005.3.1.0047

    PubMed  Google Scholar 

  112. Hung S, Deng W, Yang WK, Liu R, Lee C, Su T, Lin R, Yang D, Chang C, Chen W, Wei H, Gelovani JG (2005) Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 11:7749–7756. doi:10.1158/1078-0432.CCR-05-0876

    PubMed  CAS  Google Scholar 

  113. Wong VL, Rieman DJ, Aronson L, Dalton BJ, Greig R, Anzano MA (1989) Growth-inhibitory activity of interferon-beta against human colorectal carcinoma cell lines. Int J Cancer 43:526–530

    PubMed  CAS  Google Scholar 

  114. Lokshin A, Mayotte JE, Levitt ML (1995) Mechanism of interferon beta-induced squamous differentiation and programmed cell death in human non-small-cell lung cancer cell lines. J Natl Cancer Inst 87:206–212

    PubMed  CAS  Google Scholar 

  115. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608

    PubMed  CAS  Google Scholar 

  116. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96:1593–1603. doi:10.1093/jnci/djh299

    PubMed  CAS  Google Scholar 

  117. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF (2005) Human bone marrow–derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318. doi:10.1158/0008-5472.CAN-04-1874

    PubMed  CAS  Google Scholar 

  118. Xin H, Kanehira M, Mizuguchi H, Hayakawa T, Kikuchi T, Nukiwa T, Saijo Y (2007) Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells 25:1618–1626. doi:10.1634/stemcells.2006-0461

    PubMed  CAS  Google Scholar 

  119. Stagg J, Lejeune L, Paquin A, Galipeau J (2004) Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 15:597–608. doi:10.1089/104303404323142042

    PubMed  CAS  Google Scholar 

  120. Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C (2007) Adipose tissue–derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67:6304–6313. doi:10.1158/0008-5472.CAN-06-4024

    PubMed  CAS  Google Scholar 

  121. Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    PubMed  Google Scholar 

Download references

Acknowledgments

I wish to acknowledge the expert input on parts of this chapter that I received from Henrique Cheng (Louisiana State University) and Yao Liang Tang (University of Cincinnati) and the excellent editorial help of Dilshad Contractor (Keck Graduate Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ian Phillips PhD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Phillips, M.I. (2013). Genetically Modified Stem Cells for Transplantation. In: Danquah, M., Mahato, R. (eds) Emerging Trends in Cell and Gene Therapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-417-3_6

Download citation

Publish with us

Policies and ethics