Skip to main content

Dendritic Cells for Cancer Immunotherapy

  • Chapter
  • First Online:
Emerging Trends in Cell and Gene Therapy

Abstract

The mainstay of cancer treatment remains surgery, radiotherapy, and cytotoxic chemotherapy, which are associated with significant side effects. Cancer immunotherapy, the manipulation of the immune system to eliminate tumor cells, has been considered for several decades as an alternative to these therapies. Among immunotherapeutic modalities, the perspective of using dendritic cell vaccines to stimulate antitumor immunity has shown some promises but also limitations. Dendritic cells are the most potent antigen-presenting cells of the immune system, playing a pivotal role in the initiation and regulation of tumor-specific immune responses as they are endowed with the unique ability to take up, process, and present tumor antigens to CD4+ or CD8+ T lymphocytes. Dendritic cells also contribute to the activation of natural killer cells and to the orchestration of humoral immunity. This unique capability has been widely exploited in cancer vaccination approaches against a variety of malignancies. However, tumors commonly develop so-called “immune escape” mechanisms including the secretion of immunosuppressive ­molecules and/or the promotion of immunosuppressive cells such as regulatory T cells that impair dendritic cell functions and therefore compromise the success of dendritic cell vaccination. Specific radio- or chemoimmunotherapeutic manipulations can blunt tolerogenic cells and revert the cancer-induced immunosuppressive environment into a pro-inflammatory context that can enhance dendritic cell capability to effectively prime and sustain antitumor immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5:296–306

    Article  PubMed  CAS  Google Scholar 

  2. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  3. Palucka AK, Ueno H, Fay J et al (2008) Dendritic cells: a critical player in cancer therapy? J Immunother 31:793–805

    Article  PubMed  Google Scholar 

  4. Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–299

    Article  PubMed  CAS  Google Scholar 

  5. Adema GJ (2009) Dendritic cells from bench to bedside and back. Immunol Lett 122:128–130

    Article  PubMed  CAS  Google Scholar 

  6. Melief CJ (2008) Cancer immunotherapy by dendritic cells. Immunity 29:372–383

    Article  PubMed  CAS  Google Scholar 

  7. Ueno H, Klechevsky E, Morita R et al (2007) Dendritic cell subsets in health and disease. Immunol Rev 219:118–142

    Article  PubMed  CAS  Google Scholar 

  8. Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  9. Dubsky P, Ueno H, Piqueras B et al (2005) Human dendritic cell subsets for vaccination. J Clin Immunol 25:551–572

    Article  PubMed  Google Scholar 

  10. Pulendran B, Smith JL, Caspary G et al (1999) Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 96:1036–1041

    Article  PubMed  CAS  Google Scholar 

  11. Kimura A, Naka T, Kishimoto T (2007) IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci USA 104:12099–12104

    Article  PubMed  CAS  Google Scholar 

  12. Jego G, Palucka AK, Blanck JP et al (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19:225–234

    Article  PubMed  CAS  Google Scholar 

  13. Batista FD, Harwood NE (2009) The who, how and where of antigen presentation to B cells. Nat Rev Immunol 9:15–27

    Article  PubMed  CAS  Google Scholar 

  14. Walzer T, Dalod M, Robbins SH et al (2005) Natural-killer cells and dendritic cells: “l’union fait la force”. Blood 106:2252–2258

    Article  PubMed  CAS  Google Scholar 

  15. Fujii S, Shimizu K, Hemmi H et al (2007) Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev 220:183–198

    Article  PubMed  CAS  Google Scholar 

  16. Steinbrink K, Jonuleit H, Muller G et al (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93:1634–1642

    PubMed  CAS  Google Scholar 

  17. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952

    Article  PubMed  CAS  Google Scholar 

  18. Monti P, Leone BE, Zerbi A et al (2004) Tumor-derived MUC1 mucins interact with differentiating monocytes and induce IL-10highIL-12low regulatory dendritic cell. J Immunol 172:7341–7349

    PubMed  CAS  Google Scholar 

  19. Ohnmacht C, Pullner A, King SB et al (2009) Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206:549–559

    Article  PubMed  CAS  Google Scholar 

  20. Jonuleit H, Schmitt E, Schuler G et al (2000) Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192:1213–1222

    Article  PubMed  CAS  Google Scholar 

  21. Steinman RM, Hawiger D, Liu K et al (2003) Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann N Y Acad Sci 987:15–25

    Article  PubMed  CAS  Google Scholar 

  22. Tuettenberg A, Huter E, Hubo M et al (2009) The role of ICOS in directing T cell responses: ICOS-dependent induction of T cell anergy by tolerogenic dendritic cells. J Immunol 182:3349–3356

    Article  PubMed  CAS  Google Scholar 

  23. Banerjee DK, Dhodapkar MV, Matayeva E et al (2006) Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108:2655–2661

    Article  PubMed  CAS  Google Scholar 

  24. Yamazaki S, Steinman RM (2009) Dendritic cells as controllers of antigen-specific Foxp3+ regulatory T cells. J Dermatol Sci 54:69–75

    Article  PubMed  CAS  Google Scholar 

  25. Belkaid Y, Oldenhove G (2008) Tuning microenvironments: induction of regulatory T cells by dendritic cells. Immunity 29:362–371

    Article  PubMed  CAS  Google Scholar 

  26. Roncarolo MG, Gregori S, Battaglia M et al (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50

    Article  PubMed  CAS  Google Scholar 

  27. Stutman O (1974) Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science 183:534–536

    Article  PubMed  CAS  Google Scholar 

  28. Kaplan DH, Shankaran V, Dighe AS et al (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95:7556–7561

    Article  PubMed  CAS  Google Scholar 

  29. Smyth MJ, Thia KY, Street SE et al (2000) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755–760

    Article  PubMed  CAS  Google Scholar 

  30. Smyth MJ, Thia KY, Street SE et al (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668

    Article  PubMed  CAS  Google Scholar 

  31. Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727

    Article  PubMed  CAS  Google Scholar 

  32. Pure E, Allison JP, Schreiber RD (2005) Breaking down the barriers to cancer immunotherapy. Nat Immunol 6:1207–1210

    Article  PubMed  CAS  Google Scholar 

  33. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  PubMed  CAS  Google Scholar 

  34. Chan CW, Housseau F (2008) The ‘kiss of death’ by dendritic cells to cancer cells. Cell Death Differ 15:58–69

    Article  PubMed  CAS  Google Scholar 

  35. Ullrich E, Chaput N, Zitvogel L (2008) Killer dendritic cells and their potential role in immunotherapy. Horm Metab Res 40:75–81

    Article  PubMed  CAS  Google Scholar 

  36. Larmonier N, Billerey C, Rebe C et al (2002) An atypical caspase-independent death pathway for an immunogenic cancer cell line. Oncogene 21:6091–6100

    Article  PubMed  CAS  Google Scholar 

  37. Kepp O, Tesniere A, Zitvogel L et al (2009) The immunogenicity of tumor cell death. Curr Opin Oncol 21:71–76

    Article  PubMed  CAS  Google Scholar 

  38. Bonnotte B, Larmonier N, Favre N et al (2001) Identification of tumor-infiltrating macrophages as the killers of tumor cells after immunization in a rat model system. J Immunol 167:5077–5083

    PubMed  CAS  Google Scholar 

  39. Shimizu K, Kurosawa Y, Taniguchi M et al (2007) Cross-presentation of glycolipid from tumor cells loaded with alpha-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204:2641–2653

    Article  PubMed  CAS  Google Scholar 

  40. Gilboa E, Nair SK, Lyerly HK (1998) Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 46:82–87

    Article  PubMed  CAS  Google Scholar 

  41. Nestle FO, Farkas A, Conrad C (2005) Dendritic-cell-based therapeutic vaccination against cancer. Curr Opin Immunol 17:163–169

    Article  PubMed  CAS  Google Scholar 

  42. Palucka AK, Laupeze B, Aspord C et al (2005) Immunotherapy via dendritic cells. Adv Exp Med Biol 560:105–114

    Article  PubMed  CAS  Google Scholar 

  43. Mayordomo JI, Zorina T, Storkus WJ et al (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1:1297–1302

    Article  PubMed  CAS  Google Scholar 

  44. Shimizu J, Suda T, Yoshioka T et al (1989) Induction of tumor-specific in vivo protective immunity by immunization with tumor antigen-pulsed antigen-presenting cells. J Immunol 142:1053–1059

    PubMed  CAS  Google Scholar 

  45. Larmonier N, Cantrell J, Lacasse C et al (2008) Chaperone-rich tumor cell lysate-mediated activation of antigen-presenting cells resists regulatory T cell suppression. J Leukoc Biol 83:1049–1059

    Article  PubMed  CAS  Google Scholar 

  46. Larmonier N, Janikashvili N, LaCasse CJ et al (2008) Imatinib mesylate inhibits CD4+ CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors. J Immunol 181:6955–6963

    PubMed  CAS  Google Scholar 

  47. Larmonier N, Merino D, Nicolas A et al (2006) Apoptotic, necrotic, or fused tumor cells: an equivalent source of antigen for dendritic cell loading. Apoptosis 11:1513–1524

    Article  PubMed  CAS  Google Scholar 

  48. Staveley-O’Carroll K, Sotomayor E, Montgomery J et al (1998) Induction of antigen-specific T cell energy: an early event in the course of tumor progression. Proc Natl Acad Sci USA 95:1178–1183

    Article  PubMed  Google Scholar 

  49. Feinberg MB, Silvestri G (2002) T(S) cells and immune tolerance induction: a regulatory renaissance? Nat Immunol 3:215–217

    Article  PubMed  CAS  Google Scholar 

  50. Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807–839

    Article  PubMed  CAS  Google Scholar 

  51. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3:999–1005

    Article  PubMed  CAS  Google Scholar 

  52. Restifo NP, Esquivel F, Kawakami Y et al (1993) Identification of human cancers deficient in antigen processing. J Exp Med 177:265–272

    Article  PubMed  CAS  Google Scholar 

  53. Hicklin DJ, Wang Z, Arienti F et al (1998) beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest 101:2720–2729

    Article  PubMed  CAS  Google Scholar 

  54. Restifo NP, Marincola FM, Kawakami Y et al (1996) Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 88:100–108

    Article  PubMed  CAS  Google Scholar 

  55. Garrido F, Ruiz-Cabello F, Cabrera T et al (1997) Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18:89–95

    Article  PubMed  CAS  Google Scholar 

  56. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  PubMed  CAS  Google Scholar 

  57. Lu B, Finn OJ (2008) T-cell death and cancer immune tolerance. Cell Death Differ 15:70–79

    Article  PubMed  CAS  Google Scholar 

  58. Vucic D, Fairbrother WJ (2007) The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 13:5995–6000

    Article  PubMed  CAS  Google Scholar 

  59. Rampino N, Yamamoto H, Ionov Y et al (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275:967–969

    Article  PubMed  CAS  Google Scholar 

  60. Medema JP, de Jong J, Peltenburg LT et al (2001) Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci USA 98:11515–11520

    Article  PubMed  CAS  Google Scholar 

  61. Vicari AP, Caux C, Trinchieri G (2002) Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12:33–42

    Article  PubMed  CAS  Google Scholar 

  62. Fricke I, Gabrilovich DI (2006) Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Invest 35:459–483

    Article  PubMed  CAS  Google Scholar 

  63. Kusmartsev S, Gabrilovich DI (2006) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55:237–245

    Article  PubMed  Google Scholar 

  64. Terme M, Chaput N, Combadiere B et al (2008) Regulatory T cells control dendritic cell/NK cell cross-talk in lymph nodes at the steady state by inhibiting CD4+ self-reactive T cells. J Immunol 180:4679–4686

    PubMed  CAS  Google Scholar 

  65. Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30:636–645

    Article  PubMed  CAS  Google Scholar 

  66. Antony PA, Piccirillo CA, Akpinarli A et al (2005) CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174:2591–2601

    PubMed  CAS  Google Scholar 

  67. Piccirillo CA, Shevach EM (2001) Cutting edge: control of CD8+ T cell activation by CD4+ CD25+ immunoregulatory cells. J Immunol 167:1137–1140

    PubMed  CAS  Google Scholar 

  68. Almand B, Clark JI, Nikitina E et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689

    PubMed  CAS  Google Scholar 

  69. Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68:2561–2563

    Article  PubMed  CAS  Google Scholar 

  70. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

  71. Nagaraj S, Ziske C, Strehl J et al (2006) Dendritic cells pulsed with alpha-galactosylceramide induce anti-tumor immunity against pancreatic cancer in vivo. Int Immunol 18:1279–1283

    Article  PubMed  CAS  Google Scholar 

  72. Paczesny S, Ueno H, Fay J et al (2003) Dendritic cells as vectors for immunotherapy of cancer. Semin Cancer Biol 13:439–447

    Article  PubMed  CAS  Google Scholar 

  73. Figdor CG, de Vries IJ, Lesterhuis WJ et al (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480

    Article  PubMed  CAS  Google Scholar 

  74. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    Article  PubMed  CAS  Google Scholar 

  75. Inaba K, Inaba M, Romani N et al (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702

    Article  PubMed  CAS  Google Scholar 

  76. Schreurs MW, Eggert AA, de Boer AJ et al (1999) Generation and functional characterization of mouse monocyte-derived dendritic cells. Eur J Immunol 29:2835–2841

    Article  PubMed  CAS  Google Scholar 

  77. Romani N, Gruner S, Brang D et al (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180:83–93

    Article  PubMed  CAS  Google Scholar 

  78. Caux C, Vanbervliet B, Massacrier C et al (1996) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+ TNF alpha. J Exp Med 184:695–706

    Article  PubMed  CAS  Google Scholar 

  79. Fay JW, Palucka AK, Paczesny S et al (2006) Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol Immunother 55:1209–1218

    Article  PubMed  CAS  Google Scholar 

  80. Paczesny S, Banchereau J, Wittkowski KM et al (2004) Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J Exp Med 199:1503–1511

    Article  PubMed  CAS  Google Scholar 

  81. Banchereau J, Ueno H, Dhodapkar M et al (2005) Immune and clinical outcomes in patients with stage IV melanoma vaccinated with peptide-pulsed dendritic cells derived from CD34+ progenitors and activated with type I interferon. J Immunother 28:505–516

    Article  PubMed  CAS  Google Scholar 

  82. Pulendran B, Banchereau J, Burkeholder S et al (2000) Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 165:566–572

    PubMed  CAS  Google Scholar 

  83. Ashley DM, Faiola B, Nair S et al (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 186:1177–1182

    Article  PubMed  CAS  Google Scholar 

  84. Fields RC, Shimizu K, Mule JJ (1998) Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci USA 95:9482–9487

    Article  PubMed  CAS  Google Scholar 

  85. Geiger C, Regn S, Weinzierl A et al (2005) A generic RNA-pulsed dendritic cell vaccine strategy for renal cell carcinoma. J Transl Med 3:29

    Article  PubMed  CAS  Google Scholar 

  86. Phan V, Errington F, Cheong SC et al (2003) A new genetic method to generate and isolate small, short-lived but highly potent dendritic cell-tumor cell hybrid vaccines. Nat Med 9:1215–1219

    Article  PubMed  CAS  Google Scholar 

  87. Sauter B, Albert ML, Francisco L et al (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191:423–434

    Article  PubMed  CAS  Google Scholar 

  88. Wolfers J, Lozier A, Raposo G et al (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303

    Article  PubMed  CAS  Google Scholar 

  89. Ueda G, Tamura Y, Hirai I et al (2004) Tumor-derived heat shock protein 70-pulsed dendritic cells elicit tumor-specific cytotoxic T lymphocytes (CTLs) and tumor immunity. Cancer Sci 95:248–253

    Article  PubMed  CAS  Google Scholar 

  90. Wang XH, Qin Y, Hu MH et al (2005) Dendritic cells pulsed with gp96-peptide complexes derived from human hepatocellular carcinoma (HCC) induce specific cytotoxic T lymphocytes. Cancer Immunol Immunother 54:971–980

    Article  PubMed  CAS  Google Scholar 

  91. Andre F, Schartz NE, Movassagh M et al (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305

    Article  PubMed  CAS  Google Scholar 

  92. Fujii S, Shimizu K, Hemmi H et al (2006) Glycolipid alpha-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc Natl Acad Sci USA 103:11252–11257

    Article  PubMed  CAS  Google Scholar 

  93. Nencioni A, Grunebach F, Schmidt SM et al (2008) The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol 65:191–199

    Article  PubMed  Google Scholar 

  94. Grunebach F, Erndt S, Hantschel M et al (2008) Generation of antigen-specific CTL responses using RGS1 mRNA transfected dendritic cells. Cancer Immunol Immunother 57:1483–1491

    Article  PubMed  CAS  Google Scholar 

  95. Waldhauer I, Goehlsdorf D, Gieseke F et al (2008) Tumor-associated MICA is shed by ADAM proteases. Cancer Res 68:6368–6376

    Article  PubMed  CAS  Google Scholar 

  96. Tuyaerts S, Aerts JL, Corthals J et al (2007) Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol Immunother 56:1513–1537

    Article  PubMed  CAS  Google Scholar 

  97. Melero I, Vile RG, Colombo MP (2000) Feeding dendritic cells with tumor antigens: self-service buffet or a la carte? Gene Ther 7:1167–1170

    Article  PubMed  CAS  Google Scholar 

  98. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89

    Article  PubMed  CAS  Google Scholar 

  99. Schnurr M, Scholz C, Rothenfusser S et al (2002) Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and gammadelta T cells. Cancer Res 62:2347–2352

    PubMed  CAS  Google Scholar 

  100. Jarnjak-Jankovic S, Pettersen RD, Saeboe-Larssen S et al (2005) Preclinical evaluation of autologous dendritic cells transfected with mRNA or loaded with apoptotic cells for immunotherapy of high-risk neuroblastoma. Cancer Gene Ther 12:699–707

    Article  PubMed  CAS  Google Scholar 

  101. Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249–1255

    Article  PubMed  CAS  Google Scholar 

  102. Basu S, Binder RJ, Suto R et al (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546

    Article  PubMed  CAS  Google Scholar 

  103. Kalos M (2003) Tumor antigen-specific T cells and cancer immunotherapy: current issues and future prospects. Vaccine 21:781–786

    Article  PubMed  CAS  Google Scholar 

  104. Zeng Y, Graner MW, Katsanis E (2006) Chaperone-rich cell lysates, immune activation and tumor vaccination. Cancer Immunol Immunother 55:329–338

    Article  PubMed  CAS  Google Scholar 

  105. Nencioni A, Muller MR, Grunebach F et al (2003) Dendritic cells transfected with tumor RNA for the induction of antitumor CTL in colorectal cancer. Cancer Gene Ther 10:209–214

    Article  PubMed  CAS  Google Scholar 

  106. Muller MR, Grunebach F, Nencioni A et al (2003) Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol 170:5892–5896

    PubMed  Google Scholar 

  107. O’Rourke MG, Johnson M, Lanagan C et al (2003) Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol Immunother 52:387–395

    PubMed  Google Scholar 

  108. Holtl L, Zelle-Rieser C, Gander H et al (2002) Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 8:3369–3376

    PubMed  CAS  Google Scholar 

  109. Blachere NE, Srivastava PK (1995) Heat shock protein-based cancer vaccines and related thoughts on immunogenicity of human tumors. Semin Cancer Biol 6:349–355

    Article  PubMed  CAS  Google Scholar 

  110. Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588

    Article  PubMed  CAS  Google Scholar 

  111. Asea A, Kraeft SK, Kurt-Jones EA et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  PubMed  CAS  Google Scholar 

  112. Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396

    Article  PubMed  CAS  Google Scholar 

  113. Nair S, Wearsch PA, Mitchell DA et al (1999) Calreticulin displays in vivo peptide-binding activity and can elicit CTL responses against bound peptides. J Immunol 162:6426–6432

    PubMed  CAS  Google Scholar 

  114. Arnold D, Faath S, Rammensee H et al (1995) Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 182:885–889

    Article  PubMed  CAS  Google Scholar 

  115. Srivastava PK, Udono H (1994) Heat shock protein-peptide complexes in cancer immunotherapy. Curr Opin Immunol 6:728–732

    Article  PubMed  CAS  Google Scholar 

  116. Srivastava PK, Menoret A, Basu S et al (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8:657–665

    Article  PubMed  CAS  Google Scholar 

  117. Ishii T, Udono H, Yamano T et al (1999) Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol 162:1303–1309

    PubMed  CAS  Google Scholar 

  118. Zeng Y, Chen X, Larmonier N et al (2006) Natural killer cells play a key role in the antitumor immunity generated by chaperone-rich cell lysate vaccination. Int J Cancer 119:2624–2631

    Article  PubMed  CAS  Google Scholar 

  119. Graner M, Raymond A, Akporiaye E et al (2000) Tumor-derived multiple chaperone enrichment by free-solution isoelectric focusing yields potent antitumor vaccines. Cancer Immunol Immunother 49:476–484

    Article  PubMed  CAS  Google Scholar 

  120. Graner MW, Likhacheva A, Davis J et al (2004) Cargo from tumor-expressed albumin inhibits T-cell activation and responses. Cancer Res 64:8085–8092

    Article  PubMed  CAS  Google Scholar 

  121. Zeng Y, Feng H, Graner MW et al (2003) Tumor-derived, chaperone-rich cell lysate activates dendritic cells and elicits potent antitumor immunity. Blood 101:4485–4491

    Article  PubMed  CAS  Google Scholar 

  122. Feng H, Zeng Y, Graner MW et al (2003) Exogenous stress proteins enhance the immunogenicity of apoptotic tumor cells and stimulate antitumor immunity. Blood 101:245–252

    Article  PubMed  CAS  Google Scholar 

  123. Zeng Y, Graner MW, Thompson S et al (2005) Induction of BCR-ABL-specific immunity following vaccination with chaperone-rich cell lysates derived from BCR-ABL+tumor cells. Blood 105:2016–2022

    Article  PubMed  CAS  Google Scholar 

  124. Li G, Zeng Y, Chen X et al (2007) Human ovarian tumour-derived chaperone-rich cell lysate (CRCL) elicits T cell responses in vitro. Clin Exp Immunol 148:136–145

    Article  PubMed  CAS  Google Scholar 

  125. Chauvin C, Philippeau JM, Hemont C et al (2008) Killer dendritic cells link innate and adaptive immunity against established osteosarcoma in rats. Cancer Res 68:9433–9440

    Article  PubMed  CAS  Google Scholar 

  126. Yasuda T, Kamigaki T, Kawasaki K et al (2007) Superior anti-tumor protection and therapeutic efficacy of vaccination with allogeneic and semiallogeneic dendritic cell/tumor cell fusion hybrids for murine colon adenocarcinoma. Cancer Immunol Immunother 56:1025–1036

    Article  PubMed  Google Scholar 

  127. Lopes L, Fletcher K, Ikeda Y et al (2006) Lentiviral vector expression of tumour antigens in dendritic cells as an immunotherapeutic strategy. Cancer Immunol Immunother 55:1011–1016

    Article  PubMed  CAS  Google Scholar 

  128. Wang B, He J, Liu C et al (2006) An effective cancer vaccine modality: lentiviral modification of dendritic cells expressing multiple cancer-specific antigens. Vaccine 24:3477–3489

    Article  PubMed  CAS  Google Scholar 

  129. Hodge JW, Rad AN, Grosenbach DW et al (2000) Enhanced activation of T cells by dendritic cells engineered to hyperexpress a triad of costimulatory molecules. J Natl Cancer Inst 92:1228–1239

    Article  PubMed  CAS  Google Scholar 

  130. Nestle FO, Alijagic S, Gilliet M et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332

    Article  PubMed  CAS  Google Scholar 

  131. Ehtesham M, Kabos P, Gutierrez MA et al (2003) Intratumoral dendritic cell vaccination elicits potent tumoricidal immunity against malignant glioma in rats. J Immunother 26:107–116

    Article  PubMed  Google Scholar 

  132. Guo J, Zhu J, Sheng X et al (2007) Intratumoral injection of dendritic cells in combination with local hyperthermia induces systemic antitumor effect in patients with advanced melanoma. Int J Cancer 120:2418–2425

    Article  PubMed  CAS  Google Scholar 

  133. MartIn-Fontecha A, Sebastiani S, Hopken UE et al (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615–621

    Article  PubMed  CAS  Google Scholar 

  134. Palucka K, Banchereau J, Mellman I (2010) Designing vaccines based on biology of human dendritic cell subsets. Immunity 33:464–478

    Article  PubMed  CAS  Google Scholar 

  135. den Brok MH, Nierkens S, Figdor CG et al (2005) Dendritic cells: tools and targets for antitumor vaccination. Expert Rev Vaccines 4:699–710

    Article  Google Scholar 

  136. Bonmort M, Dalod M, Mignot G et al (2008) Killer dendritic cells: IKDC and the others. Curr Opin Immunol 20:558–565

    Article  PubMed  CAS  Google Scholar 

  137. Wesa AK, Storkus WJ (2008) Killer dendritic cells: mechanisms of action and therapeutic implications for cancer. Cell Death Differ 15:51–57

    Article  PubMed  CAS  Google Scholar 

  138. Chauvin C, Josien R (2008) Dendritic cells as killers: mechanistic aspects and potential roles. J Immunol 181:11–16

    PubMed  CAS  Google Scholar 

  139. Larmonier N, Fraszczak J, Lakomy D et al (2010) Killer dendritic cells and their potential for cancer immunotherapy. Cancer Immunol Immunother: CII 59:1–11

    Article  PubMed  Google Scholar 

  140. Chan CW, Crafton E, Fan HN et al (2006) Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat Med 12:207–213

    Article  PubMed  CAS  Google Scholar 

  141. Blasius AL, Barchet W, Cella M et al (2007) Development and function of murine B220+CD11c+NK1.1+ cells identify them as a subset of NK cells. J Exp Med 204:2561–2568

    Article  PubMed  CAS  Google Scholar 

  142. Fraszczak J, Trad M, Janikashvili N et al (2010) Peroxynitrite-dependent killing of cancer cells and presentation of released tumor antigens by activated dendritic cells. J Immunol 184:1876–1884

    Article  PubMed  CAS  Google Scholar 

  143. Fanger NA, Maliszewski CR, Schooley K et al (1999) Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med 190:1155–1164

    Article  PubMed  CAS  Google Scholar 

  144. Janjic BM, Lu G, Pimenov A et al (2002) Innate direct anticancer effector function of human immature dendritic cells. I. Involvement of an apoptosis-inducing pathway. J Immunol 168:1823–1830

    PubMed  CAS  Google Scholar 

  145. Lu G, Janjic BM, Janjic J et al (2002) Innate direct anticancer effector function of human immature dendritic cells. II. Role of TNF, lymphotoxin-alpha(1)beta(2), Fas ligand, and TNF-related apoptosis-inducing ligand. J Immunol 168:1831–1839

    PubMed  CAS  Google Scholar 

  146. Manna PP, Mohanakumar T (2002) Human dendritic cell mediated cytotoxicity against breast carcinoma cells in vitro. J Leukoc Biol 72:312–320

    PubMed  CAS  Google Scholar 

  147. Schmitz M, Zhao S, Deuse Y et al (2005) Tumoricidal potential of native blood dendritic cells: direct tumor cell killing and activation of NK cell-mediated cytotoxicity. J Immunol 174:4127–4134

    PubMed  CAS  Google Scholar 

  148. Shi J, Ikeda K, Fujii N et al (2005) Activated human umbilical cord blood dendritic cells kill tumor cells without damaging normal hematological progenitor cells. Cancer Sci 96:127–133

    Article  PubMed  CAS  Google Scholar 

  149. Chapoval AI, Tamada K, Chen L (2000) In vitro growth inhibition of a broad spectrum of tumor cell lines by activated human dendritic cells. Blood 95:2346–2351

    PubMed  CAS  Google Scholar 

  150. Liu S, Yu Y, Zhang M et al (2001) The involvement of TNF-alpha-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-beta-stimulated human dendritic cells to tumor cells. J Immunol 166:5407–5415

    PubMed  CAS  Google Scholar 

  151. Vanderheyde N, Aksoy E, Amraoui Z et al (2001) Tumoricidal activity of monocyte-derived dendritic cells: evidence for a caspase-8-dependent, Fas-associated death domain-independent mechanism. J Immunol 167:3565–3569

    PubMed  CAS  Google Scholar 

  152. Yang R, Xu D, Zhang A et al (2001) Immature dendritic cells kill ovarian carcinoma cells by a FAS/FASL pathway, enabling them to sensitize tumor-specific CTLs. Int J Cancer 94:407–413

    Article  PubMed  CAS  Google Scholar 

  153. Triozzi PL, Khurram R, Aldrich WA et al (2000) Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer. Cancer 89:2646–2654

    Article  PubMed  CAS  Google Scholar 

  154. Stary G, Bangert C, Tauber M et al (2007) Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J Exp Med 204:1441–1451

    Article  PubMed  CAS  Google Scholar 

  155. De Vries IJ, Krooshoop DJ, Scharenborg NM et al (2003) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 63:12–17

    PubMed  Google Scholar 

  156. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  PubMed  CAS  Google Scholar 

  157. Cheng F, Wang HW, Cuenca A et al (2003) A critical role for Stat3 signaling in immune tolerance. Immunity 19:425–436

    Article  PubMed  CAS  Google Scholar 

  158. Bromberg JF, Wrzeszczynska MH, Devgan G et al (1999) Stat3 as an oncogene. Cell 98:295–303

    Article  PubMed  CAS  Google Scholar 

  159. Wang T, Niu G, Kortylewski M et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54

    Article  PubMed  CAS  Google Scholar 

  160. Kortylewski M, Kujawski M, Wang T et al (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321

    Article  PubMed  CAS  Google Scholar 

  161. Burdelya L, Kujawski M, Niu G et al (2005) Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects. J Immunol 174:3925–3931

    PubMed  CAS  Google Scholar 

  162. Evel-Kabler K, Song XT, Aldrich M et al (2006) SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest 116:90–100

    Article  PubMed  CAS  Google Scholar 

  163. Melief CJ (2003) Mini-review: regulation of cytotoxic T lymphocyte responses by dendritic cells: peaceful coexistence of cross-priming and direct priming? Eur J Immunol 33:2645–2654

    Article  PubMed  CAS  Google Scholar 

  164. Vermi W, Bonecchi R, Facchetti F et al (2003) Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. J Pathol 200:255–268

    Article  PubMed  Google Scholar 

  165. Salio M, Cella M, Vermi W et al (2003) Plasmacytoid dendritic cells prime IFN-gamma-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. Eur J Immunol 33:1052–1062

    Article  PubMed  CAS  Google Scholar 

  166. Munn DH, Sharma MD, Hou D et al (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290

    PubMed  CAS  Google Scholar 

  167. Zhang M, Tang H, Guo Z et al (2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol 5:1124–1133

    Article  PubMed  CAS  Google Scholar 

  168. Gabrilovich DI, Velders MP, Sotomayor EM et al (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166:5398–5406

    PubMed  CAS  Google Scholar 

  169. Li Q, Pan PY, Gu P et al (2004) Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res 64:1130–1139

    Article  PubMed  CAS  Google Scholar 

  170. Huang B, Pan PY, Li Q et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131

    Article  PubMed  CAS  Google Scholar 

  171. Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  172. Larmonier N, Marron M, Zeng Y et al (2007) Tumor-derived CD4(+)CD25 (+) regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10. Cancer Immunol Immunother 56:48–59

    Article  PubMed  CAS  Google Scholar 

  173. Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458

    Article  PubMed  CAS  Google Scholar 

  174. Ghiringhelli F, Larmonier N, Schmitt E et al (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    Article  PubMed  CAS  Google Scholar 

  175. Liyanage UK, Moore TT, Joo HG et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761

    PubMed  CAS  Google Scholar 

  176. Viguier M, Lemaitre F, Verola O et al (2004) Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 173:1444–1453

    PubMed  CAS  Google Scholar 

  177. Prasad SJ, Farrand KJ, Matthews SA et al (2005) Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+CD25+ regulatory T cells. J Immunol 174:90–98

    PubMed  CAS  Google Scholar 

  178. Dannull J, Su Z, Rizzieri D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633

    Article  PubMed  CAS  Google Scholar 

  179. Yang YA, Dukhanina O, Tang B et al (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615

    PubMed  CAS  Google Scholar 

  180. Muraoka RS, Dumont N, Ritter CA et al (2002) Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109:1551–1559

    PubMed  CAS  Google Scholar 

  181. Uhl M, Aulwurm S, Wischhusen J et al (2004) SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961

    Article  PubMed  CAS  Google Scholar 

  182. Attia P, Powell DJ Jr, Maker AV et al (2006) Selective elimination of human regulatory T ­lymphocytes in vitro with the recombinant immunotoxin LMB-2. J Immunother 29:208–214

    Article  PubMed  CAS  Google Scholar 

  183. North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155:1063–1074

    Article  PubMed  CAS  Google Scholar 

  184. Ramakrishnan R, Assudani D, Nagaraj S et al (2010) Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest 120:1111–1124

    Article  PubMed  CAS  Google Scholar 

  185. Taieb J, Chaput N, Schartz N et al (2006) Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J Immunol 176:2722–2729

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicolas Larmonier or Emmanuel Katsanis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Larmonier, N., Katsanis, E. (2013). Dendritic Cells for Cancer Immunotherapy. In: Danquah, M., Mahato, R. (eds) Emerging Trends in Cell and Gene Therapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-417-3_11

Download citation

Publish with us

Policies and ethics