Skip to main content
Book cover

Ion Channels pp 217–231Cite as

The Use of Dansyl-Calmodulin to Study Interactions with Channels and Other Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 998))

Abstract

Steady-state fluorescence spectroscopy is a biophysical technique widely employed to characterize ­interactions between proteins in vitro. Only a few proteins naturally fluoresce in cells, but by covalently attaching fluorophores virtually all proteins can be monitored. One of the first extrinsic fluorescent probes to be developed, and that is still in use, is dansyl chloride. We have used this method to monitor the interaction of a variety of proteins, including ion channels, with the Ca2+-dependent regulatory protein calmodulin. Here we describe the preparation and use of dansyl-calmodulin (D-CaM).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walker JM (1994) The dansyl method for identifying N-terminal amino acids. Methods Mol Biol 32:321–328

    PubMed  CAS  Google Scholar 

  2. Kincaid RL, Vaughan M (1986) Direct comparison of Ca2+ requirements for calmodulin interaction with and activation of protein phosphatase. Proc Natl Acad Sci U S A 83:1193–1197

    Article  PubMed  CAS  Google Scholar 

  3. Johnson JD, Wittenauer LA (1983) A fluorescent calmodulin that reports the binding of hydrophobic inhibitory ligands. Biochem J 211:473–479

    PubMed  CAS  Google Scholar 

  4. Kincaid RL, Vaughan M, Osborne JC Jr, Tkachuk VA (1982) Ca2+-dependent interaction of 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with cyclic nucleotide phosphodiesterase, calcineurin, and troponin I. J Biol Chem 257:10638–10643

    PubMed  CAS  Google Scholar 

  5. Olwin BB, Storm DR (1983) Preparation of fluorescent labeled calmodulins. Methods Enzymol 102:148–157

    Article  PubMed  CAS  Google Scholar 

  6. Malencik DA, Anderson SR (1983) Binding of hormones and neuropeptides by calmodulin. Biochemistry 22:1995–2001

    Article  PubMed  CAS  Google Scholar 

  7. Mori M, Konno T, Ozawa T, Murata M, Imoto K, Nagayama K (2000) Novel interaction of the voltage-dependent sodium channel (VDSC) with calmodulin: does VDSC acquire calmodulin-mediated Ca2+-sensitivity? Biochemistry 39:1316–1323

    Article  PubMed  CAS  Google Scholar 

  8. Torok K, Cowley DJ, Brandmeier BD, Howell S, Aitken A, Trentham DR (1998) Inhibition of calmodulin-activated smooth-muscle myosin light-chain kinase by calmodulin-binding peptides and fluorescent ­(phosphodiesterase-activating) calmodulin derivatives. Biochemistry 37:6188–6198

    Article  PubMed  CAS  Google Scholar 

  9. Ehlers MD, Zhang S, Bernhadt JP, Huganir RL (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84:745–755

    Article  PubMed  CAS  Google Scholar 

  10. El Far O, Bofill-Cardona E, Airas JM, O’Connor V, Boehm S, Freissmuth M, Nanoff C, Betz H (2001) Mapping of calmodulin and Gbg binding domains within the C-terminal region of the metabotropic glutamate receptor 7A. J Biol Chem 276:30662–30669

    Article  PubMed  CAS  Google Scholar 

  11. Schleiff E, Schmitz A, McIlhinney RA, Manenti S, Vergères G (1996) Myristoylation does not modulate the properties of MARCKS-related protein (MRP) in solution. J Biol Chem 271: 26794–26802

    Article  PubMed  CAS  Google Scholar 

  12. Alaimo A, Gomez-Posada JC, Aivar P, Etxeberría A, Rodriguez-Alfaro JA, Areso P, Villarroel A (2009) Calmodulin activation limits the rate of KCNQ2 K  +  channel exit from the endoplasmic reticulum. J Biol Chem 284:20668–20675

    Article  PubMed  CAS  Google Scholar 

  13. Dick IE, Tadross MR, Liang H, Tay LH, Yang W, Yue DT (2008) A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 451:830–834

    Article  PubMed  CAS  Google Scholar 

  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi N, Matsubara M, Takasaki A, Titani K, Taniguchi H (1998) An expression system of rat calmodulin using T7 phage promoter in Escherichia coli. Protein Expr Purif 12:25–28

    Article  PubMed  CAS  Google Scholar 

  16. Wallace RW, Tallant EA, Cheung WY (1983) Assay of calmodulin by Ca2+-dependent phosphodiesterase. Methods Enzymol 102: 39–47

    Article  PubMed  CAS  Google Scholar 

  17. Chen RF (1968) Dansyl labeled proteins: determination of extinction coefficient and number of bound residues with radioactive dansyl chloride. Anal Biochem 25:412–416

    Article  PubMed  CAS  Google Scholar 

  18. Yus-Nájera E, Santana-Castro I, Villarroel A (2002) The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem 277: 28545–28553

    Article  PubMed  Google Scholar 

  19. Pitt GS, Zuhlke RD, Hudmon A, Schulman H, Reuter H, Tsien RW (2001) Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J Biol Chem 276:30794–30802

    Article  PubMed  CAS  Google Scholar 

  20. VanScyoc WS, Sorensen BR, Rusinova E, Laws WR, Ross JB, Shea MA (2002) Calcium binding to calmodulin mutants monitored by domain-specific intrinsic phenylalanine and tyrosine fluorescence. Biophys J 83:2767–2780

    Article  PubMed  CAS  Google Scholar 

  21. Gao J, Yao Y, Squier TC (2001) Oxidatively modified calmodulin binds to the plasma membrane Ca-ATPase in a nonproductive and conformationally disordered complex. Biophys J 80:1791–1801

    Article  PubMed  CAS  Google Scholar 

  22. Leclerc E, Corti C, Schmid H et al (1999) Serine/threonine phosphorylation of calmodulin modulates its interaction with the binding domains of target enzymes. Biochem J 344 (Pt 2):403–411

    Article  PubMed  CAS  Google Scholar 

  23. Liu M, Chen TY, Ahamed B, Li J, Yau KW (1994) Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266:1348–1354

    Article  PubMed  CAS  Google Scholar 

  24. Turner JH, Gelasco AK, Raymond JR (2004) Calmodulin interacts with the third intracellular loop of the serotonin 5-hydroxytryptamine1A receptor at two distinct sites: putative role in receptor phosphorylation by protein kinase C. J Biol Chem 279:17027–17037

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish Ministry of Education (BFU2009-07581), the Spanish Ion Channel Initiative Consolider project (CSD2008-00005), and the Basque Government (SAIOTEK SA-2006/00023). A. Alaimo was partially funded by Fundación Biofísica Bizkaia. Proteomics Core Facility-SGIKER is a member of ProteoRed-ISCIII. Technical and human support provided by SGIKER (UPV/EHU, MICINN, GV/EJ, ERDF, and ESF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alaimo, A., Malo, C., Areso, P., Aloria, K., Millet, O., Villarroel, A. (2013). The Use of Dansyl-Calmodulin to Study Interactions with Channels and Other Proteins. In: Gamper, N. (eds) Ion Channels. Methods in Molecular Biology, vol 998. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-351-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-351-0_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-350-3

  • Online ISBN: 978-1-62703-351-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics