Skip to main content

Labeled Stem Cells as Disease Models and in Drug Discovery

  • Protocol
  • First Online:
Pluripotent Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 997))

Abstract

Human pluripotent stem cells provide unique possibilities for in vitro studies of human cells in basic research, disease modeling as well as in industrial applications. By introducing relevant genome engineering technology, and thereby creating, for example, reporter cell lines, one will facilitate and improve safety pharmacology, toxicity testing, and can help the scientists to better understand pathological processes in humans. This review discusses how the merger of these two fields, human pluripotent stem cells and genome engineering, form extremely powerful tools and how they have been implemented already within the scientific community. In sharp contrast to immortalized human cell lines, which are both easy to expand and very simple to transfect, the genetically modified pluripotent stem cell line can be directed to a specific cell lineage and provide the user with highly relevant information. We highlight some of the challenges the field had to solve and how new technology advancements has removed the early bottlenecks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  2. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187

    Article  PubMed  CAS  Google Scholar 

  3. Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song CZ, Chen X, Brimble SN, McLean A, Galeano MJ, Uhl EW, D’Amour KA, Chesnut JD, Rao MS, Blau CA, Robins AJ (2007) Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110:4111–4119

    Article  PubMed  CAS  Google Scholar 

  4. Ellerström C, Strehl R, Noaksson K, Hyllner J, Semb H (2007) Facilitated expansion of human embryonic stem cells by single cell enzymatic dissociation. Stem Cells 25:1690–1696

    Article  PubMed  Google Scholar 

  5. Watanabe K, Ueno M, Kamiya D, Nishiyayama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    Article  PubMed  CAS  Google Scholar 

  6. Takahashi K, Yamanka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 12:663–676

    Article  Google Scholar 

  7. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  8. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewiz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Routti V, Stewart R, Sluvkin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 21:1917–1920

    Article  Google Scholar 

  9. Jensen J, Hyllner J, Björquist P (2009) Human embryonic stem cell technologies and drug discovery. J Cell Physiol 219:513–519

    Article  PubMed  CAS  Google Scholar 

  10. Sartipy P, Björquist P (2011) Human pluripotent stem cell-based models for cardiac and hepatic toxicity assessment. Stem Cells 29:744–748

    Article  PubMed  CAS  Google Scholar 

  11. Vidarsson H, Hyllner J, Sartipy P (2010) Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications. Stem Cell Rev 6:108–120

    Article  PubMed  Google Scholar 

  12. Guddati AK, Kessler JA (2010) Novel method of single antibiotic selection of cells containing multiple stage-specific promoter-fluorophore plasmids. J Biomol Tech 2:18–24

    Google Scholar 

  13. Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C (2007) Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 15:2027–2036

    Article  PubMed  CAS  Google Scholar 

  14. Xu XQ, Zweigerdt R, Soo SY, Ngoh ZX, Tham SC, Wang ST, Graichen R, Davidson B, Colman A, Sun W (2008) Highly enriched cardiomyocytes from human embryonic stem cells. Cytotherapy 10:376–389

    Article  PubMed  Google Scholar 

  15. Rodríguez-Antona C, Donato MT, Boobis A, Edwards RJ, Watts PS, Castell JV, Gómez-Lechón MJ (2002) Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica 32:505–520

    Article  PubMed  Google Scholar 

  16. Yildirimman R, Brolén G, Vilardell M, Eriksson G, Synnergren J, Gmuender H, Kamburov A, Ingelman-Sundberg M, Castell J, Lahoz A, Kleinjans J, van Delft J, Björquist P, Herwig R (2011) Human embryonic stem cell derived hepatocyte-like cells as a tool for in vitro hazard assessment of chemical carcinogenicity. Toxicol Sci 124:278–290

    Article  PubMed  CAS  Google Scholar 

  17. Duan Y, Catana A, Meng Y, Yamamoto N, He S, Gupta S, Gambhir SS, Zern MA (2007) Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 25:3058–3068

    Article  PubMed  CAS  Google Scholar 

  18. Scherer WF, Syverton JT, Gey GO (1953) Studies on the propagation in vitro of poliomyelitis viruses IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 97:695–710

    Article  PubMed  CAS  Google Scholar 

  19. Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305

    Article  PubMed  CAS  Google Scholar 

  20. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  PubMed  CAS  Google Scholar 

  21. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Chen G, Yu D, McCarthy S, Sebat J, Gage FH (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225

    Article  PubMed  CAS  Google Scholar 

  22. Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012) A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med 4:124–129

    Google Scholar 

  23. Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321

    Article  PubMed  CAS  Google Scholar 

  24. Braam SR, Denning C, van der Brink S, Kats P, Hochstenbach R, Passier R, Mummery CL (2008) Improved genetic manipulations of human embryonic stem cells. Nat Methods 5:389–392

    Article  PubMed  CAS  Google Scholar 

  25. Gerrard L, Zhao D, Clark AJ, Cui W (2005) Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 23:124–133

    Article  PubMed  CAS  Google Scholar 

  26. Liu YP, Dovzhenko OV, Garthwaite MA, Dambaeva SV, Durning M, Pollastrini LM, Golos TG (2004) Maintenance of pluripotency in human embryonic stem cells stably over-expressing enhanced green fluorescent protein. Stem Cells Dev 13:636–645

    Article  PubMed  CAS  Google Scholar 

  27. Zhou BY, Ye Z, Chen G, Gao ZP, Zhang YA, Cheng L (2007) Inducible and reversible transgene expression in human stem cells after efficient and stable gene transfer. Stem Cells 25:779–789

    Article  PubMed  CAS  Google Scholar 

  28. Wilber A, Linehan JL, Tian X, Woll PS, Morris JK, Belur LR, McIvor RS, Kaufman DS (2007) Efficient and stable transgene expression in human embryonic stem cells using transposon-mediated gene transfer. Stem Cells 25:2919–2927

    Article  PubMed  CAS  Google Scholar 

  29. Thyagarajan B, Liu Y, Shin S, Lakshmipathy U, Scheyhing K, Xue H, Ellerström C, Strehl R, Hyllner J, Rao MS, Chesnut JD (2008) Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells 26:119–126

    Article  PubMed  CAS  Google Scholar 

  30. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857

    Article  PubMed  CAS  Google Scholar 

  31. Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ, Porteus MH, Joung JK, Cheng L (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:97–110

    Article  PubMed  CAS  Google Scholar 

  32. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734

    Article  PubMed  CAS  Google Scholar 

  33. Ivics Z, Hackett PB, Plasterk RH, Izsvák Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  PubMed  CAS  Google Scholar 

  34. Aronovich EL, McIvor RS, Hackett PB (2011) The Sleeping Beauty transposon system: a non-viral vector for gene therapy. Hum Mol Genet 15:14–20

    Article  Google Scholar 

  35. Thyagarajan B (2011) Bacteriophage integrases for site specific integration. In: Lakshmipathy L, Thyagarajan B (eds) Primary and stem cells. Gene transfer technologies and applications, Wiley. pp 199–210

    Google Scholar 

  36. Liu J, Jeppesen I, Nielsen K, Jensen TG (2006) Phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther 15:1188–1190

    Article  Google Scholar 

  37. Davis RP, Ng ES, Costa M, Mossman AK, Sourris K, Elefanty AG, Stanely EG (2008) Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111:1876–1884

    Article  PubMed  CAS  Google Scholar 

  38. Irion S, Luche H, Gadue P, Fehling HJ, Kennedy M, Keller G (2007) Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol 25:1477–1482

    Article  PubMed  CAS  Google Scholar 

  39. Wang P, Rodriguez RT, Wang J, Ghodasara A, Kim SK (2011) Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell Stem Cell 8:335–346

    Article  PubMed  Google Scholar 

  40. Gonzalez B, Schwimmer LJ, Fuller RP, Ye Y, Asawapornmongkol L, Barbas CF 3rd (2010) Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 4:791–810

    Article  Google Scholar 

  41. Soldner F, Laganiére J, Cheng AW, Hockemeye D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146:318–331

    Article  PubMed  CAS  Google Scholar 

  42. Yao Y, Nashun B, Zhou T, Qin I, Qin L, Zhao S, Xu J, Esteban MA, Chen X (2012) Generation of CD34+ cells from CCR5-disrupted human embryonic and induced pluripotent stem cells. Human Gene Ther 23:238–242

    Article  CAS  Google Scholar 

  43. Hanson C, Hardarson T, Ellerström C, Nordberg M, Caisander G, Rao M, Hyllner J, Stenevi U (2012) Transplantation of human embryonic stem cells onto a partially wounded human cornea in vitro. Acta Ophtalmol Jan 26. (Epub ahead of print)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. Bhaskar Thyagarajan, Jon Chesnut, and Mahendra Rao for fruitful collaboration and for providing the tools for the Jump In technology. The authors would also like to thank Drs. Charles Hanson, Ulf Stenevi, and Thorir Hardarson for the providing the picture with human corna, and Tina Nilsson, Jenny Johannisson, Dorra El Hajjam, Ingrid Rydström, and Jenny Lindqvist for the execution and characterization of the reporter lines shown in the figures of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ellerström, C., Strehl, R., Hyllner, J. (2013). Labeled Stem Cells as Disease Models and in Drug Discovery. In: Lakshmipathy, U., Vemuri, M. (eds) Pluripotent Stem Cells. Methods in Molecular Biology, vol 997. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-348-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-348-0_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-347-3

  • Online ISBN: 978-1-62703-348-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics