Skip to main content

The Simulation Approach to Lipid–Protein Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 974))

Abstract

The interactions between lipids and proteins are crucial for a range of biological processes, from the folding and stability of membrane proteins to signaling and metabolism facilitated by lipid-binding proteins. However, high-resolution structural details concerning functional lipid/protein interactions are scarce due to barriers in both experimental isolation of native lipid-bound complexes and subsequent biophysical characterization. The molecular dynamics (MD) simulation approach provides a means to complement available structural data, yielding dynamic, structural, and thermodynamic data for a protein embedded within a physiologically realistic, modelled lipid environment. In this chapter, we provide a guide to current methods for setting up and running simulations of membrane proteins and soluble, lipid-binding proteins, using standard atomistically detailed representations, as well as simplified, coarse-grained models. In addition, we outline recent studies that illustrate the power of the simulation approach in the context of biologically relevant lipid/protein interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Russ AP, Lampel S (2005) The druggable genome: an update. Drug Discov Today 10:1607–1610

    Article  PubMed  Google Scholar 

  2. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  PubMed  CAS  Google Scholar 

  3. Phillips R et al (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385

    Article  PubMed  CAS  Google Scholar 

  4. Lee AG (2011) Biological membranes: the importance of molecular detail. Trends Biochem Sci 36:493–500

    Article  PubMed  CAS  Google Scholar 

  5. Bernlohr DA et al (1997) Intracellular lipid-binding proteins and their genes. Annu Rev Nutr 17:277–303

    Article  PubMed  CAS  Google Scholar 

  6. De Libero G, Mori L (2005) Recognition of lipid antigens by T cells. Nat Rev Immunol 5:485–496

    Article  PubMed  CAS  Google Scholar 

  7. Fleishman SJ, Unger VM, Ben-Tal N (2006) Transmembrane protein structures without X-rays. Trends Biochem Sci 31:106–113

    Article  PubMed  CAS  Google Scholar 

  8. Arora A, Tamm LK (2001) Biophysical approaches to membrane protein structure determination. Curr Opin Struct Biol 11:540–547

    Article  PubMed  CAS  Google Scholar 

  9. Garavito R, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406

    Article  PubMed  CAS  Google Scholar 

  10. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  PubMed  CAS  Google Scholar 

  11. Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71

    Article  PubMed  CAS  Google Scholar 

  12. Dror RO et al (2010) Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations. J Gen Physiol 135:555–562

    Article  PubMed  CAS  Google Scholar 

  13. Domene C, Bond PJ, Sansom MSP (2003) Membrane protein simulations: ion channels and bacterial outer membrane proteins. Adv Protein Chem 66:159–193

    Article  PubMed  CAS  Google Scholar 

  14. Sansom MSP et al (2002) Water in ion channels and pores—simulation studies. Novartis Found Symp 245:66–78

    Article  PubMed  CAS  Google Scholar 

  15. Sansom MSP et al (2005) Molecular simulations and lipid-protein interactions: potassium channels and other membrane proteins. Biochem Soc Trans 33:916–920

    Article  PubMed  CAS  Google Scholar 

  16. Shaw DE et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346

    Article  PubMed  CAS  Google Scholar 

  17. Ash WL et al (2004) Computer simulations of membrane proteins. Biochim Biophys Acta 1666:158–189

    Article  PubMed  CAS  Google Scholar 

  18. Bond PJ, Khalid S (2010) Antimicrobial and cell-penetrating peptides: structure, assembly and mechanisms of membrane lysis via atomistic and coarse-grained molecular dynamics simulations. Protein Pept Lett 17:1313–1327

    Article  PubMed  CAS  Google Scholar 

  19. Gumbart J et al (2005) Molecular dynamics simulations of proteins in lipid bilayers. Curr Opin Struct Biol 15:423–431

    Article  PubMed  CAS  Google Scholar 

  20. Beckstein O et al (2003) Ion channel gating: insights via molecular simulation. FEBS Lett 555:85–90

    Article  PubMed  CAS  Google Scholar 

  21. Bond PJ, Sansom MS (2004) The simulation approach to bacterial outer membrane proteins. Mol Membr Biol 21:151–161

    Article  PubMed  CAS  Google Scholar 

  22. Nielsen SO et al (2004) Coarse grain models and the computer simulation of soft materials. J Phys Condense Matter 16:R481–R512

    Article  CAS  Google Scholar 

  23. Chandrasekhar I et al (2003) A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur Biophys J 32:67–77

    PubMed  CAS  Google Scholar 

  24. Chiu SW et al (2009) An improved united atom force field for simulation of mixed lipid bilayers. J Phys Chem B 113:2748–2763

    Article  PubMed  CAS  Google Scholar 

  25. Poger D, Van Gunsteren WF, Mark AE (2010) A new force field for simulating phosphatidylcholine bilayers. J Comput Chem 31:1117–1125

    Article  PubMed  CAS  Google Scholar 

  26. Oostenbrink C et al (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  PubMed  CAS  Google Scholar 

  27. Klauda JB et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  PubMed  CAS  Google Scholar 

  28. Vanommeslaeghe K et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690

    PubMed  CAS  Google Scholar 

  29. MacKerell AD Jr et al (1998) CHARMM: the energy function and its parameterization with an overview of the program. Wiley, Chichester, pp 271–277

    Google Scholar 

  30. Kaminski GA et al (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  31. Lindorff-Larsen K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958

    PubMed  CAS  Google Scholar 

  32. Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    Article  PubMed  CAS  Google Scholar 

  33. Venturoli M, Smit B, Sperotto MM (2005) Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys J 88:1778–1798

    Article  PubMed  CAS  Google Scholar 

  34. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    Article  CAS  Google Scholar 

  35. Marrink SJ et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  PubMed  CAS  Google Scholar 

  36. Monticelli L et al (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  37. Bond PJ, Sansom MSP (2006) Insertion and assembly of membrane proteins via simulation. J Am Chem Soc 128:2697–2704

    Article  PubMed  CAS  Google Scholar 

  38. Bond PJ, Wee CL, Sansom MS (2008) Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer. Biochemistry 47:11321–11331

    Article  PubMed  CAS  Google Scholar 

  39. Bond PJ, Sansom MSP (2007) Bilayer deformation by the Kv channel volage sensor domain revealed by self-assembly simulations. Proc Natl Acad Sci U S A 104:2631–2636

    Article  PubMed  CAS  Google Scholar 

  40. Shih AY et al (2006) Coarse grained protein-lipid model with application to lipoprotein particles. J Phys Chem B 110:3674–3684

    Article  PubMed  CAS  Google Scholar 

  41. Van Der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  42. Hess B et al (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  43. Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed  CAS  Google Scholar 

  44. Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  PubMed  CAS  Google Scholar 

  45. Friedrichs MS et al (2009) Accelerating molecular dynamic simulation on graphics processing units. J Comput Chem 30:864–872

    Article  PubMed  CAS  Google Scholar 

  46. Klepeis JL et al (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19:120–127

    Article  PubMed  CAS  Google Scholar 

  47. Deol SS et al (2004) Lipid-protein interactions of integral membrane proteins: a comparative simulation study. Biophys J 87:1–13

    Article  CAS  Google Scholar 

  48. Domene C et al (2003) Lipid/protein interactions and the membrane/water interfacial region. J Am Chem Soc 125:14966–14967

    Article  PubMed  CAS  Google Scholar 

  49. Woolf TB, Roux B (1996) Structure, energetics, and dynamics of lipid-protein interactions: a molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins 24:92–114

    Article  PubMed  CAS  Google Scholar 

  50. Ulmschneider MB, Sansom MS (2001) Amino acid distributions in integral membrane protein structures. Biochim Biophys Acta 1512:1–14

    Article  PubMed  CAS  Google Scholar 

  51. Ulmschneider MB, Sansom MS, Di Nola A (2005) Properties of integral membrane protein structures: derivation of an implicit membrane potential. Proteins 59:252–265

    Article  PubMed  CAS  Google Scholar 

  52. Lomize MA et al (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625

    Article  PubMed  CAS  Google Scholar 

  53. Faraldo-Gómez JD, Smith GR, Sansom MS (2002) Setting up and optimization of membrane protein simulations. Eur Biophys J 31:217–227

    Article  PubMed  CAS  Google Scholar 

  54. Tieleman DP, Berendsen HJ (1998) A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J 74:2786–2801

    Article  PubMed  CAS  Google Scholar 

  55. Staritzbichler R et al (2011) GRIFFIN: a versatile methodology for optimization of protein-lipid interfaces for membrane protein simulations. J Chem Theory Comput 7:1167–1176

    Article  CAS  Google Scholar 

  56. Wolf MG et al (2010) g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31:2169–2174

    Article  PubMed  CAS  Google Scholar 

  57. Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41:475–488

    Article  PubMed  CAS  Google Scholar 

  58. Cisneros DA et al (2011) Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J 31(4):1041–1053

    Article  PubMed  CAS  Google Scholar 

  59. Bond PJ et al (2006) Membrane protein dynamics and detergent interactions within a crystal: a simulation study of OmpA. Proc Natl Acad Sci U S A 103:9518–9523

    Article  PubMed  CAS  Google Scholar 

  60. Fernandez C et al (2002) Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Proc Natl Acad Sci U S A 99:13533–13537

    Article  PubMed  CAS  Google Scholar 

  61. Cuthbertson JM, Bond PJ, Sansom MSP (2006) Transmembrane helix–helix interactions: comparative simulations of the glycophorin A dimer. Biochemistry 45:14298–14310

    Article  PubMed  CAS  Google Scholar 

  62. Sands ZA, Sansom MS (2007) How does a voltage sensor interact with a lipid bilayer? Simulations of a potassium channel domain. Structure 15:235–244

    Article  PubMed  CAS  Google Scholar 

  63. Patargias G et al (2005) Molecular dynamics simulations of GlpF in a micelle vs. in a bilayer: conformational dynamics of a membrane protein as a function of environment. J Phys Chem B 109:575–582

    Article  PubMed  CAS  Google Scholar 

  64. Bond PJ, Sansom MSP (2003) Membrane protein dynamics versus environment: simulations of OmpA in a micelle and in a bilayer. J Mol Biol 329:1035–1053

    Article  PubMed  CAS  Google Scholar 

  65. Cox K, Sansom MS (2009) One membrane protein, two structures and six environments: a comparative molecular dynamics simulation study of the bacterial outer membrane protein PagP. Mol Membr Biol 26:205–214

    Article  PubMed  CAS  Google Scholar 

  66. Bond PJ et al (2004) MD simulations of spontaneous membrane protein/detergent micelle formation. J Am Chem Soc 126:15948–15949

    Article  PubMed  CAS  Google Scholar 

  67. Braun R, Engelman DM, Schulten K (2004) Molecular dynamics simulations of micelle formation around dimeric Glycophorin A transmembrane helices. Biophys J 87:754–763

    Article  PubMed  CAS  Google Scholar 

  68. Bockmann RA, Caflisch A (2005) Spontaneous formation of detergent micelles around the outer membrane protein OmpX. Biophys J 88:3191–3204

    Article  PubMed  CAS  Google Scholar 

  69. Scott KA et al (2008) Coarse-grained MD simulations of membrane protein-bilayer self-assembly. Structure 16:621–630

    Article  PubMed  CAS  Google Scholar 

  70. Bond PJ et al (2007) Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J Struct Biol 157:593–605

    Article  PubMed  CAS  Google Scholar 

  71. Rouse SL et al (2009) Simulations of the BM2 proton channel transmembrane domain from influenza virus B. Biochemistry 48:9949–9951

    Article  PubMed  CAS  Google Scholar 

  72. Carpenter T et al (2008) Self-assembly of a simple membrane protein: coarse-grained molecular dynamics simulations of the influenza M2 channel. Biophys J 95:3790–3801

    Article  PubMed  CAS  Google Scholar 

  73. Shih AY et al (2007) Disassembly of nanodiscs with cholate. Nano Lett 7:1692–1696

    Article  PubMed  CAS  Google Scholar 

  74. Shih AY, Sligar SG, Schulten K (2009) Maturation of high-density lipoproteins. J R Soc Interface 6:863–871

    Article  PubMed  CAS  Google Scholar 

  75. Stansfeld PJ et al (2009) PIP(2)-binding site in Kir channels: definition by multiscale biomolecular simulations. Biochemistry 48:10926–10933

    Article  PubMed  CAS  Google Scholar 

  76. Rzepiela AJ et al (2010) Reconstruction of atomistic details from coarse-grained structures. J Comput Chem 31:1333–1343

    PubMed  CAS  Google Scholar 

  77. Rzepiela AJ et al (2010) Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions. Faraday Discuss 144:431–443, discussion 445–481

    Article  PubMed  CAS  Google Scholar 

  78. Cojocaru V et al (2011) Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS Comput Biol 7:e1002152

    Article  PubMed  CAS  Google Scholar 

  79. Sengupta D et al (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 1778:2308–2317

    Article  PubMed  CAS  Google Scholar 

  80. Leontiadou H, Mark AE, Marrink SJ (2006) Antimicrobial peptides in action. J Am Chem Soc 128:12156–12161

    Article  PubMed  CAS  Google Scholar 

  81. Chen R, Mark AE (2011) The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action. Eur Biophys J 40:545–553

    Article  PubMed  CAS  Google Scholar 

  82. Bond PJ et al (2008) Coarse-grained simulations of the membrane-active antimicrobial peptide maculatin 1.1. Biophys J 95:3802–3815

    Article  PubMed  CAS  Google Scholar 

  83. Chang R, Ayton GS, Voth GA (2005) Multiscale coupling of mesoscopic- and atomistic-level lipid bilayer simulations. J Chem Phys 122:244716

    Article  PubMed  CAS  Google Scholar 

  84. Christen M, van Gunsteren WF (2006) Multigraining: an algorithm for simultaneous fine-grained and coarse-grained simulation of molecular systems. J Chem Phys 124:154106

    Article  PubMed  CAS  Google Scholar 

  85. Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473

    Article  PubMed  CAS  Google Scholar 

  86. Michel J, Orsi M, Essex JW (2008) Prediction of partition coefficients by multiscale hybrid atomic-level/coarse-grain simulations. J Phys Chem B 112:657–660

    Article  PubMed  CAS  Google Scholar 

  87. Orsi M, Noro MG, Essex JW (2011) Dual-resolution molecular dynamics simulation of antimicrobials in biomembranes. J R Soc Interface 8:826–841

    Article  PubMed  CAS  Google Scholar 

  88. Orsi M, Sanderson WE, Essex JW (2009) Permeability of small molecules through a lipid bilayer: a multiscale simulation study. J Phys Chem B 113:12019–12029

    Article  PubMed  CAS  Google Scholar 

  89. Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 110:15045–15048

    Article  PubMed  CAS  Google Scholar 

  90. Rzepiela AJ et al (2011) Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys Chem Chem Phys 13:10437–10448

    Article  PubMed  CAS  Google Scholar 

  91. Garzón D, Bond PJ, Faraldo-Gómez JD (2009) Predicted structural basis for CD1c presentation of mycobacterial branched polyketides and long lipopeptide antigens. Mol Immunol 47:253–260

    Article  PubMed  CAS  Google Scholar 

  92. Sanderson JP et al (2012) Natural variations at position 93 of the invariant Valpha24-Jalpha18 alpha chain of human iNKT-cell TCRs strongly impact on CD1d binding. Eur J Immunol 42:248–255

    Article  PubMed  CAS  Google Scholar 

  93. Scharf L et al (2010) The 2.5 Å structure of CD1c in complex with a mycobacterial lipid reveals an open groove ideally suited for diverse antigen presentation. Immunity 33:853–862

    Article  PubMed  CAS  Google Scholar 

  94. Trabuco LG et al (2011) Applications of the molecular dynamics flexible fitting method. J Struct Biol 173:420–427

    Article  PubMed  CAS  Google Scholar 

  95. Sacchettini JC, Gordon JI, Banaszak LJ (1989) Crystal structure of rat intestinal fatty-acid-binding protein. Refinement and analysis of the Escherichia coli-derived protein with bound palmitate. J Mol Biol 208:327–339

    Article  PubMed  CAS  Google Scholar 

  96. Hodsdon ME, Cistola DP (1997) Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acid-binding protein: implications for the mechanism of ligand entry. Biochemistry 36:1450–1460

    Article  PubMed  CAS  Google Scholar 

  97. Zhang F et al (1997) Solution structure of human intestinal fatty acid binding protein: implications for ligand entry and exit. J Biomol NMR 9:213–228

    Article  PubMed  CAS  Google Scholar 

  98. Friedman R, Nachliel E, Gutman M (2006) Fatty acid binding proteins: same structure but different binding mechanisms? Molecular dynamics simulations of intestinal fatty acid binding protein. Biophys J 90:1535–1545

    Article  PubMed  CAS  Google Scholar 

  99. van Aalten DM et al (1995) Essential dynamics of the cellular retinol-binding protein–evidence for ligand-induced conformational changes. Protein Eng 8:1129–1135

    Article  PubMed  Google Scholar 

  100. Friedman R, Nachliel E, Gutman M (2005) Molecular dynamics simulations of the adipocyte lipid binding protein reveal a novel entry site for the ligand. Biochemistry 44:4275–4283

    Article  PubMed  CAS  Google Scholar 

  101. Levin LB et al (2010) Insight into the interaction sites between fatty acid binding proteins and their ligands. J Mol Model 16:929–938

    Article  PubMed  CAS  Google Scholar 

  102. Levin LB et al (2009) Molecular dynamics study of the interaction between fatty acid binding proteins with palmitate mini-micelles. Mol Cell Biochem 326:29–33

    Article  PubMed  CAS  Google Scholar 

  103. Likic VA, Prendergast FG (2001) Dynamics of internal water in fatty acid binding protein: computer simulations and comparison with experiments. Proteins 43:65–72

    Article  PubMed  CAS  Google Scholar 

  104. Bakowies D, Van Gunsteren WF (2002) Simulations of apo and holo-fatty acid binding protein: structure and dynamics of protein, ligand and internal water. J Mol Biol 315:713–736

    Article  PubMed  CAS  Google Scholar 

  105. Woolf TB, Grossfield A, Tychko M (2000) Differences between apo and three holo forms of the intestinal fatty acid binding protein seen by molecular dynamics computer calculations. Biophys J 78:608–625

    Article  PubMed  CAS  Google Scholar 

  106. Eberini I et al (2008) Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein. Proteins 71:1889–1898

    Article  PubMed  CAS  Google Scholar 

  107. Ricchiuto P et al (2008) Structural and dynamic roles of permanent water molecules in ligand molecular recognition by chicken liver bile acid binding protein. J Mol Recognit 21:348–354

    Article  PubMed  CAS  Google Scholar 

  108. Nymeyer H, Woolf TB, Garcia AE (2005) Folding is not required for bilayer insertion: replica exchange simulations of an alpha-helical peptide with an explicit lipid bilayer. Proteins 59:783–790

    Article  PubMed  CAS  Google Scholar 

  109. Ulmschneider MB, Ulmschneider JP (2008) Folding peptides into lipid bilayer membranes. J Chem Theory Comput 4:1807–1809

    Article  CAS  Google Scholar 

  110. Killian JA, von Heijne G (2000) How proteins adapt to a membrane-water interface. Trends Biochem Sci 25:429–434

    Article  PubMed  CAS  Google Scholar 

  111. Ulmschneider MB et al (2010) Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides. J Am Chem Soc 132:3452–3460

    Article  PubMed  CAS  Google Scholar 

  112. Deng Y, Roux B (2009) Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B 113:2234–2246

    Article  PubMed  CAS  Google Scholar 

  113. Johansson AC, Lindahl E (2008) Position-resolved free energy of solvation for amino acids in lipid membranes from molecular dynamics simulations. Proteins 70:1332–1344

    Article  PubMed  CAS  Google Scholar 

  114. MacCallum JL, Bennett WF, Tieleman DP (2007) Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment. J Gen Physiol 129:371–377

    Article  PubMed  CAS  Google Scholar 

  115. MacCallum JL, Bennett WF, Tieleman DP (2008) Distribution of amino acids in a lipid bilayer from computer simulations. Biophys J 94:3393–3404

    Article  PubMed  CAS  Google Scholar 

  116. MacCallum JL, Tieleman DP (2011) Hydrophobicity scales: a thermodynamic looking glass into lipid–protein interactions. Trends Biochem Sci 36:653–662

    Article  PubMed  CAS  Google Scholar 

  117. Hessa T et al (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–1030

    Article  PubMed  CAS  Google Scholar 

  118. Li L, Vorobyov I, Allen TW (2008) Potential of mean force and pKa profile calculation for a lipid membrane-exposed arginine side chain. J Phys Chem B 112:9574–9587

    Article  PubMed  CAS  Google Scholar 

  119. Johansson AC, Lindahl E (2009) Protein contents in biological membranes can explain abnormal solvation of charged and polar residues. Proc Natl Acad Sci U S A 106:15684–15689

    Article  PubMed  CAS  Google Scholar 

  120. Schow EV et al (2011) Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments. J Membr Biol 239:35–48

    Article  PubMed  CAS  Google Scholar 

  121. Gumbart J, Chipot C, Schulten K (2011) Free-energy cost for translocon-assisted insertion of membrane proteins. Proc Natl Acad Sci U S A 108:3596–3601

    Article  PubMed  CAS  Google Scholar 

  122. Pitman MC et al (2005) Role of cholesterol and polyunsaturated chains in lipid–protein interactions: molecular dynamics simulation of rhodopsin in a realistic membrane environment. J Am Chem Soc 127:4576–4577

    Article  PubMed  CAS  Google Scholar 

  123. Grossfield A, Feller SE, Pitman MC (2006) A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids. Proc Natl Acad Sci U S A 103:4888–4893

    Article  PubMed  CAS  Google Scholar 

  124. Holdbrook DA et al (2010) Stability and membrane orientation of the fukutin transmembrane domain: a combined multiscale molecular dynamics and circular dichroism study. Biochemistry 49:10796–10802

    Article  PubMed  CAS  Google Scholar 

  125. Law RJ et al (2005) Membrane protein structure quality in molecular dynamics simulation. J Mol Graph Model 24:157–165

    Article  PubMed  CAS  Google Scholar 

  126. Punta M et al (2007) Membrane protein prediction methods. Methods 41:460–474

    Article  PubMed  CAS  Google Scholar 

  127. Crisman TJ et al (2009) Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats. Proc Natl Acad Sci U S A 106:20752–20757

    Article  PubMed  CAS  Google Scholar 

  128. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  PubMed  CAS  Google Scholar 

  129. Anezo C et al (2003) Methodological issues in lipid bilayer simulations. J Phys Chem B 107:9424–9433

    Article  CAS  Google Scholar 

  130. Patra M et al (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84:3636–3645

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Bond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Paramo, T., Garzón, D., Holdbrook, D.A., Khalid, S., Bond, P.J. (2013). The Simulation Approach to Lipid–Protein Interactions. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 974. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-275-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-275-9_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-274-2

  • Online ISBN: 978-1-62703-275-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics