Skip to main content

Quartz Crystal Microbalances as Tools for Probing Protein–Membrane Interactions

  • Protocol
  • First Online:
Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 974))

Abstract

Extensive studies on the spontaneous collapse of phospholipid vesicles into supported lipid bilayers (SLBs) have led to procedures which allow SLB formation on a wealth of substrates and lipid compositions. SLBs provide a widely accepted and versatile model system which mimics the natural cell membrane separating the extracellular and intracellular fluids of the living cell. The quartz crystal microbalance with dissipation monitoring (QCM-D) has been central both in the understanding of vesicle collapse into SLBs on various substrates and in probing the kinetics and mechanisms of biomolecular interactions with SLBs in real time. We describe a robust procedure to form SLBs of zwitterionic and charged lipids on SiO2 sensor crystals which subsequently can be exploited to probe the interaction between proteins and peptides with the SLB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Höök F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H (2001) Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal Chem 73:5796–5804

    Article  PubMed  Google Scholar 

  2. Dixon MC (2008) Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J Biomol Tech 19:151

    PubMed  Google Scholar 

  3. Höök F, Vörös J, Rodahl M, Kurrat R, Böni P, Ramsden JJ, Textor M, Spencer ND, Tengvall P, Gold J (2002) A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf B Biointerfaces 24:155–170

    Article  Google Scholar 

  4. Höök F, Rodahl M, Kasemo B, Brzezinski P (1998) Structural changes in hemoglobin during adsorption to solid surfaces: effects of pH, ionic strength, and ligand binding. Proc Nat Acad Sci U S A 95:12271

    Article  Google Scholar 

  5. Rodahl M, Höök F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, Voinova M, Kasemo B (1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107:229–246

    Article  PubMed  CAS  Google Scholar 

  6. Holst J, Watson S, Lord MS, Eamegdool SS, Bax DV, Nivison-Smith LB, Kondyurin A, Ma L, Oberhauser AF, Weiss AS, Rasko JEJ (2010) Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat Biotech 28:1123–1128

    Article  CAS  Google Scholar 

  7. Höök F, Rodahl M, Brzezinski P, Kasemo B (1998) Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance. Langmuir 14:729–734

    Article  Google Scholar 

  8. Ayela C, Roquet F, Valera L, Granier C, Nicu L, Pugnière M (2007) Antibody–antigenic peptide interactions monitored by SPR and QCM-D: a model for SPR detection of IA-2 autoantibodies in human serum. Biosens Bioelectron 22:3113–3119

    Article  PubMed  CAS  Google Scholar 

  9. Modin C, Stranne AL, Foss M, Duch M, Justesen J, Chevallier J, Andersen LK, Hemmersam AG, Pedersen FS (2006) QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces. Biomaterials 27:1346–1354

    Article  PubMed  CAS  Google Scholar 

  10. Svedhem S, Dahlborg D, Ekeroth J, Kelly J, Hook F, Gold J (2003) In situ peptide-modified supported lipid bilayers for controlled cell attachment. Langmuir 19:6730–6736

    Article  CAS  Google Scholar 

  11. Malmström J, Agheli H, Kingshott P, Sutherland DS (2007) Viscoelastic modeling of highly hydrated Laminin layers at homogeneous and nanostructured surfaces: quantification of protein layer properties using QCM-D and SPR. Langmuir 23:9760–9768

    Article  PubMed  Google Scholar 

  12. Richter RP, Berat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497–3505

    Article  PubMed  CAS  Google Scholar 

  13. Richter R, Mukhopadhyay A, Brisson A (2003) Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys J 85:3035–3047

    Article  PubMed  CAS  Google Scholar 

  14. Reimhult E, Hook F, Kasemo B (2003) Intact vesicle adsorption and supported biomembrane formation from vesicles in solution: influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir 19:1681–1691

    Article  CAS  Google Scholar 

  15. Höök F, Ray A, Nordén B, Kasemo B (2001) Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shear-wave attenuation measurements. Langmuir 17:8305–8312

    Article  Google Scholar 

  16. Edvardsson M, Svedhem S, Wang G, Richter R, Rodahl M, Kasemo B (2008) QCM-D and reflectometry instrument: applications to supported lipid structures and their biomolecular interactions. Anal Chem 81:349–361

    Article  Google Scholar 

  17. Thid D, Holm K, Eriksson PS, Ekeroth J, Kasemo B, Gold J (2008) Supported phospholipid bilayers as a platform for neural progenitor cell culture. J Biomed Mater Res Part A 84A:940–953

    Article  CAS  Google Scholar 

  18. Huang C-J, Cho N-J, Hsu C-J, Tseng P-Y, Frank CW, Chang Y-C (2010) Type I collagen-functionalized supported lipid bilayer as a cell culture platform. Biomacromolecules 11:1231–1240

    Article  PubMed  CAS  Google Scholar 

  19. Richter RP, Hock KK, Burkhartsmeyer J, Boehm H, Bingen P, Wang G, Steinmetz NF, Evans DJ, Spatz JP (2007) Membrane-grafted hyaluronan films: a well-defined model system of glycoconjugate cell coats. J Am Chem Soc 129:5306–5307

    Article  PubMed  CAS  Google Scholar 

  20. Fezoua-Boubegtiten Z, Desbat B, Brisson A, Gounou C, Laguerre M, Lecomte S (2011) Effect of Mg2+ versus Ca2+ on the behavior of Annexin A5 in a membrane-bound state. Eur Biophys J 40:641–649

    Article  PubMed  CAS  Google Scholar 

  21. Justesen PH, Kristensen T, Ebdrup T, Otzen D (2004) Investigating porcine pancreatic phospholipase A2 action on vesicles and supported planar bilayers using a quartz crystal microbalance with dissipation. J Colloid Interface Sci 279:399–409

    Article  PubMed  CAS  Google Scholar 

  22. Jackman JA, Cho N-J, Duran RS, Frank CW (2009) Interfacial binding dynamics of bee venom phospholipase A2 investigated by dynamic light scattering and quartz crystal microbalance. Langmuir 26:4103–4112

    Article  Google Scholar 

  23. Nielsen SB, Otzen DE (2010) Impact of the antimicrobial peptide Novicidin on membrane structure and integrity. J Colloid Interface Sci 345:248–256

    Article  PubMed  CAS  Google Scholar 

  24. Piantavigna S, McCubbin GA, Boehnke S, Graham B, Spiccia L, Martin LL (2011) A mechanistic investigation of cell-penetrating Tat peptides with supported lipid membranes. Biochimica et Biophysica Acta (BBA) Biomembranes 1808:1811–1817

    Google Scholar 

  25. Piantavigna S, Czihal P, Mechler A, Richter M, Hoffmann R, Martin LL (2009) Cell penetrating apidaecin peptide interactions with biomimetic phospholipid membranes. Int J Pept Res Therapeut 15:139–146

    Article  CAS  Google Scholar 

  26. McCubbin GA, Praporski S, Piantavigna S, Knappe D, Hoffmann R, Bowie JH, Separovic F, Martin LL (2010) QCM-D fingerprinting of membrane-active peptides. Eur Biophys J 40:437–446.

    Google Scholar 

  27. Sherman PJ, Jackway RJ, Gehman JD, Praporski S, McCubbin GA, Mechler A, Martin LL, Separovic F, Bowie JH (2009) Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1 a: an NMR and QCM study. Biochemistry 48:11892–11901

    Article  PubMed  CAS  Google Scholar 

  28. Knappe D, Piantavigna S, Hansen A, Mechler A, Binas A, Nolte O, Martin LL, Hoffmann R (2010) Oncocin (VDKPPYLPRPRPPRRIYNR-NH2): a novel antibacterial peptide optimized against gram-negative human pathogens. J Med Chem 53:5240–5247

    Article  PubMed  CAS  Google Scholar 

  29. Mechler A, Praporski S, Atmuri K, Boland M, Separovic F, Martin LL (2007) Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Biophys J 93:3907–3916

    Article  PubMed  CAS  Google Scholar 

  30. Nielsen SB, Wilhelm K, Vad B, Schleucher J, Morozova-Roche LA, Otzen D (2010) The interaction of equine lysozyme: oleic acid complexes with lipid membranes suggests a cargo off-loading mechanism. J Mol Biol 398:351–361

    Article  PubMed  CAS  Google Scholar 

  31. Glasmästar K, Larsson C, Höök F, Kasemo B (2002) Protein adsorption on supported phospholipid bilayers. J Colloid Interface Sci 246:40–47

    Article  PubMed  Google Scholar 

  32. Richter RP, Maury N, Brisson AR (2005) On the effect of the solid support on the interleaflet distribution of lipids in supported lipid bilayers. Langmuir 21:299–304

    Article  PubMed  CAS  Google Scholar 

  33. Cho NJ, Frank CW, Kasemo B, Höök F (2010) Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat Protocol 5:1096–1106

    Article  CAS  Google Scholar 

  34. Anderson TH, Min Y, Weirich KL, Zeng H, Fygenson D, Israelachvili JN (2009) Formation of supported bilayers on silica substrates. Langmuir 25:6997–7005

    Article  PubMed  CAS  Google Scholar 

  35. Richter RP, Brisson AR (2005) Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry. Biophys J 88:3422–3433

    Article  PubMed  CAS  Google Scholar 

  36. Keller CA, Glasmästar K, Zhdanov VP, Kasemo B (2000) Formation of supported membranes from vesicles. Phys Rev Lett 84:5443–5446

    Article  PubMed  CAS  Google Scholar 

  37. Keller CA, Kasemo B (1998) Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J 75:1397–1402

    Article  PubMed  CAS  Google Scholar 

  38. Cho NJ, Cho SJ, Cheong KH, Glenn JS, Frank CW (2007) Employing an amphipathic viral peptide to create a lipid bilayer on Au and TiO2. J Am Chem Soc 129:10050–10051

    Article  PubMed  CAS  Google Scholar 

  39. Rossetti FF, Bally M, Michel R, Textor M, Reviakine I (2005) Interactions between titanium dioxide and phosphatidyl serine-containing liposomes: formation and patterning of supported phospholipid bilayers on the surface of a medically relevant material. Langmuir 21:6443–6450

    Article  PubMed  CAS  Google Scholar 

  40. Mashaghi A, Swann M, Popplewell J, Textor M, Reimhult E (2008) Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics. Anal Chem 80:3666–3676

    Article  PubMed  CAS  Google Scholar 

  41. Buzhynskyy N, Golczak M, Lai-Kee-Him J, Lambert O, Tessier B, Gounou C, Bérat R, Simon A, Granier T, Chevalier JM (2009) Annexin-A6 presents two modes of association with phospholipid membranes. A combined QCM-D, AFM and cryo-TEM study. J Struct Biol 168:107–116

    Article  PubMed  CAS  Google Scholar 

  42. Kastl K, Ross M, Gerke V, Steinem C (2002) Kinetics and thermodynamics of annexin A1 binding to solid-supported membranes: a QCM study. Biochemistry 41:10087–10094

    Article  PubMed  CAS  Google Scholar 

  43. Sauerbrey G (1959) The use of quartz oscillators for weighing thin layers and for microweighing. Z Phys 155:206–222

    Article  CAS  Google Scholar 

  44. Rodahl M, Kasemo B (1996) On the measurement of thin liquid overlayers with the quartz-crystal microbalance. Sens Actuators A Phys 54:448–456

    Article  Google Scholar 

  45. Richter RP, Lai Kee Him J, Tessier B, Tessier C, Brisson AR (2005) On the kinetics of adsorption and two-dimensional self-assembly of annexin A5 on supported lipid bilayers. Biophys J 89:3372–3385

    Article  PubMed  CAS  Google Scholar 

  46. Voinova MV, Jonson M, Kasemo B (2002) Missing mass effect in biosensor’s QCM applications. Biosens Bioelectron 17:835–841

    Article  PubMed  CAS  Google Scholar 

  47. Larsson C, Rodahl M, Höök F (2003) Characterization of DNA immobilization and subsequent hybridization on a 2D arrangement of streptavidin on a biotin-modified lipid bilayer supported on SiO2. Anal Chem 75:5080–5087

    Article  PubMed  CAS  Google Scholar 

  48. Voros J (2004) The density and refractive index of adsorbing protein layers. Biophys J 87:553–561

    Article  PubMed  Google Scholar 

  49. Dutta AK, Nayak A, Belfort G (2008) Viscoelastic properties of adsorbed and cross-linked polypeptide and protein layers at a solid– liquid interface. J Colloid Interface Sci 324:55–60

    Article  PubMed  CAS  Google Scholar 

  50. Gispert M, Serro A, Colaço R, Saramago B (2008) Bovine serum albumin adsorption onto 316 L stainless steel and alumina: a comparative study using depletion, protein radiolabeling, quartz crystal microbalance and atomic force microscopy. Surf Interface Anal 40:1529–1537

    Article  CAS  Google Scholar 

  51. Kim JT, Weber N, Shin GH, Huang Q, Liu SX (2007) The study of-lactoglobulin adsorption on polyethersulfone thin film surface using QCM-D and AFM. J Food Sci 72:E214–E221

    Article  PubMed  CAS  Google Scholar 

  52. Otzen DE, Oliveberg M, Höök F (2003) Adsorption of a small protein to a methyl-terminated hydrophobic surfaces: effect of protein-folding thermodynamics and kinetics. Colloids Surf B: Biointerfaces 29:67–73

    Article  CAS  Google Scholar 

  53. Otzen D (2008) Differential adsorption of variants of the Thermomyces lanuginosus lipase on a hydrophobic surface suggests a role for local flexibility. Colloids Surf B Biointerfaces 64:223–228

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Otzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nielsen, S.B., Otzen, D.E. (2013). Quartz Crystal Microbalances as Tools for Probing Protein–Membrane Interactions. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 974. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-275-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-275-9_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-274-2

  • Online ISBN: 978-1-62703-275-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics