Skip to main content

Hormone Therapy to Improve Growth in Infants with Chronic Kidney Disease

  • Chapter
  • First Online:
Nutrition in Infancy

Abstract

The term chronic kidney disease (CKD) denotes the persistence of a renal disorder for at least 3 months. CKD is graded as stage 1 when renal glomerular filtration rate (GFR) is normal and from stages 2–5 when the GFR is low and according to the severity of the GFR reduction [1]. Stage 5 CKD equals the classic term “end-stage renal disease” (ESRD) and implies the need of dialysis. The application of this classification to infants needs to take into account that the GFR, expressed in mL/min/1.73 m2, gradually increase during the first months of life and does not reach normal adult values until 1 year of age. In this chapter, CKD will refer to stages with decreased GFR unless the opposite is specifically mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD–MBD). Kidney Int. 2009;76 Suppl 113:S1–130.

    Google Scholar 

  2. The North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) 2008 annual report. https://web.emmes.com/study/ped/annlrept/annlrept.html. Accessed 8 September 2011.

  3. Fine RN. Etiology and treatment of growth retardation in children with chronic kidney disease and end-stage renal disease: a historical perspective. Pediatr Nephrol. 2010;25:725–32.

    Article  PubMed  Google Scholar 

  4. Fouque D, Pelletier S, Mafra D, Chauveau P. Nutrition and chronic kidney disease. Kidney Int. 2011;80:348–57.

    Article  PubMed  CAS  Google Scholar 

  5. Garcia E, Rodriguez J, Santos F. Crecimiento y nutrición en el fallo renal crónico. In: Santos F, Garcia-Nieto V, Rodríguez-Iturbe B, editors. Nefrologia Pediatrica. 2nd ed. Madrid: Aula Medica; 2006. p. 683–93.

    Google Scholar 

  6. García E, Santos F, Rodríguez J, Martínez V, Rey C, Veldhuis J, et al. Impaired secretion of growth hormone in experimental uremia: relevance of caloric deficiency. Kidney Int. 1997;52:648–53.

    Article  PubMed  Google Scholar 

  7. Tönshoff B, Edén S, Weiser E, Carlsson B, Robinson IC, Blum WF, et al. Reduced hepatic growth hormone (GH) receptor gene expression and increased plasma GH binding protein in experimental uremia. Kidney Int. 1994;45:1085–92.

    Article  PubMed  Google Scholar 

  8. Martínez V, Balbín M, Ordóñez FA, Rodríguez J, García E, Medina A, et al. Hepatic expression of growth hormone receptor/binding protein and insulin-like growth factor I genes in uremic rats. Influence of nutritional deficit. Growth Horm IGF Res. 1999;9:61–8.

    Article  PubMed  Google Scholar 

  9. Edmondson SR, Baker NL, Oh J, Kovacs G, Werther GA, Mehls O. Growth hormone receptor abundance in tibial growth plates of uremic rats: GH/IGF-I treatment. Kidney Int. 2000;58:62–70.

    Article  PubMed  CAS  Google Scholar 

  10. Powell DR, Durham SK, Liu F, Baker BK, Lee PD, Watkins SL, et al. The insulin-like growth factor axis and growth in children with chronic renal failure: a report of the Southwest Pediatric Nephrology Study Group. J Clin Endocrinol Metab. 1998;83:1654–61.

    Article  PubMed  CAS  Google Scholar 

  11. Tönshoff B, Blum WF, Wingen AM, Mehls O. Serum insulin-like growth factors (IGFs) and IGF binding proteins 1, 2, and 3 in children with chronic renal failure: relationship to height and glomerular filtration rate. The European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. J Clin Endocrinol Metab. 1995;80:2684–91.

    Article  PubMed  Google Scholar 

  12. Schaefer F, Chen Y, Tsao T, Nouri P, Rabkin R. Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J Clin Invest. 2001;108:467–75.

    PubMed  CAS  Google Scholar 

  13. Sun DF, Zheng Z, Tummala P, Oh J, Schaefer F, Rabkin R. Chronic uremia attenuates growth hormone-induced signal transduction in skeletal muscle. J Am Soc Nephrol. 2004;15:2630–6.

    Article  PubMed  CAS  Google Scholar 

  14. Franke D, Völker S, Haase S, Pavicic L, Querfeld U, Ehrich JH, et al. Prematurity, small for gestational age and perinatal parameters in children with congenital, hereditary and acquired chronic kidney disease. Nephrol Dial Transplant. 2010;25:3918–24.

    Article  PubMed  Google Scholar 

  15. Norman LJ, Macdonald IA, Watson AR. Optimising nutrition in chronic renal insufficiency-growth. Pediatr Nephrol. 2004;19:1245–52.

    Article  PubMed  Google Scholar 

  16. Mak RH, Ikizler AT, Kovesdy CP, Raj DS, Stenvinkel P, Kalantar-Zadeh K. Wasting in chronic kidney disease. J Cachex Sarcopenia Muscle. 2011;2:9–25.

    Article  Google Scholar 

  17. Evans WJ, Morley JE, Argiles J, et al. Cachexia: a new definition. Clin Nutr. 2008;27:793–9.

    Article  PubMed  CAS  Google Scholar 

  18. Fouque D, Kalantar-Zadeh K, Kopple J, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73:391–8.

    Article  PubMed  CAS  Google Scholar 

  19. Rambod M, Bross R, Zitterkophet J, et al. Association of Malnutrition-Inflammation Score with quality of life and mortality in hemodialysis patients: a 5-year prospective cohort study. Am J Kidney Dis. 2009;53:298–309.

    Article  PubMed  Google Scholar 

  20. Wong CS, Hingorani S, Gillen DL, et al. Hypoalbuminemia and risk of death in pediatric patients with end-stage renal disease. Kidney Int. 2002;61:630–7.

    Article  PubMed  Google Scholar 

  21. Mak RH, Cheung W. Therapeutic strategy for cachexia in chronic kidney disease. Curr Opin Nephrol Hypertens. 2007;16:542–6.

    Article  PubMed  Google Scholar 

  22. Mitch WE. Proteolytic mechanisms, not malnutrition, cause loss of muscle mass in kidney failure. J Ren Nutr. 2006;16:208–11.

    Article  PubMed  Google Scholar 

  23. Pecoits-Filho R, Sylvestre LC, Stenvinkel P. Chronic kidney disease and inflammation in pediatric patients: from bench to playground. Pediatr Nephrol. 2005;20:714–20.

    Article  PubMed  Google Scholar 

  24. Cheung WW, Paik KH, Mak RH. Inflammation and cachexia in chronic kidney disease. Pediatr Nephrol. 2010;25(4):711–24.

    Article  PubMed  Google Scholar 

  25. Kalantar-Zadeh K, Block G, McAllister CJ, Humphreys MH, Kopple JD. Appetite and inflammation, nutrition, anemia, and clinical outcome in hemodialysis patients. Am J Clin Nutr. 2004;80:299–307.

    PubMed  CAS  Google Scholar 

  26. Daschner M, Tonshoff B, Blum WF, et al. Inappropriate elevation of serum leptin levels in children with chronic renal failure. European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. J Am Soc Nephrol. 1998;9:1074–9.

    PubMed  CAS  Google Scholar 

  27. Buscher AK, Buscher R, Hauffa BP, Hoyer PF. Alterations in appetite-regulating hormones influence protein-energy wasting in pediatric patients with chronic kidney disease. Pediatr Nephrol. 2010;25:2295–301.

    Article  PubMed  Google Scholar 

  28. Yoshimoto A, Mori K, Sugawara A, Mukoyama M, et al. Plasma ghrelin and desacyl ghrelin concentrations in renal failure. J Am Soc Nephrol. 2002;13:2748–52.

    Article  PubMed  CAS  Google Scholar 

  29. Nusken KD, Groschl M, Rauh M, Stohr W, Rascher W, Dotsch J. Effect of renal failure and dialysis on circulating ghrelin concentration in children. Nephrol Dial Transplant. 2004;19:2156–7.

    Article  PubMed  Google Scholar 

  30. Mak RH, Cheung W, Cone RD, Marks DL. Orexigenic and anorexigenic mechanisms in the control of nutrition in chronic kidney disease. Pediatr Nephrol. 2005;20:427–31.

    Article  PubMed  Google Scholar 

  31. Stenvinkel P, Heimburger O, Lonnqvist F. Serum leptin concentrations correlate to plasma insulin concentrations independent of body fat content in chronic renal failure. Nephrol Dial Transplant. 1997;12:1321–5.

    Article  PubMed  CAS  Google Scholar 

  32. Santos F, Carbajo-Perez E, Rodriguez J, et al. Alterations of the growth plate in chronic renal failure. Pediatr Nephrol. 2005;20:330–4.

    Article  PubMed  Google Scholar 

  33. KDOQI Work Group. KDOQI clinical practice guideline for nutrition in children with CKD: 2008 update. Executive summary. Am J Kidney Dis. 2009;53:S11–104.

    Google Scholar 

  34. Chronic Kidney Disease Guidelines. Available at http://www.cari.org.qu/ckd_nutrition_list_published.php. Cited 2012 Sep 26.

  35. Pollock C, Voss D, Hodson E, Crompton C. The CARI guidelines. Nutrition and growth in kidney disease. Nephrology (Carlton). 2005;10 Suppl 5:S177–230.

    Google Scholar 

  36. Kari JA, Gonzalez C, Ledermann SE, Shaw V, Rees L. Outcome and growth of infants with severe chronic renal failure. Kidney Int. 2000;57:1681–7.

    Article  PubMed  CAS  Google Scholar 

  37. Ledermann SE, Shaw V, Trompeter RS. Long-term enteral nutrition in infants and young children with chronic renal failure. Pediatr Nephrol. 1999;13:870–5.

    Article  PubMed  CAS  Google Scholar 

  38. Honda M, Kamiyama Y, Kawamura K, et al. Growth, development and nutritional status in Japanese children under 2 years on continuous ambulatory peritoneal dialysis. Pediatr Nephrol. 1995;9:543–8.

    Article  PubMed  CAS  Google Scholar 

  39. Zadik Z, Frishberg Y, Drukkeret A, et al. Excessive dietary protein and suboptimal caloric intake have a negative effect on the growth of children with chronic renal disease before and during growth hormone therapy. Metabolism. 1998;47:264–8.

    Article  PubMed  CAS  Google Scholar 

  40. Claris-Appiani A, Bianchi ML, Biniet P, et al. Growth in young children with chronic renal failure. Pediatr Nephrol. 1989;3:301–4.

    Article  PubMed  CAS  Google Scholar 

  41. Orellana P, Juarez-Congelosi M, Goldstein SL. Intradialytic parenteral nutrition treatment and biochemical marker assessment for malnutrition in adolescent maintenance hemodialysis patients. J Ren Nutr. 2005;15:312–7.

    Article  PubMed  Google Scholar 

  42. Krause I, Shamir R, Davidovits M, et al. Intradialytic parenteral nutrition in malnourished children treated with hemodialysis. J Ren Nutr. 2002;12:55–9.

    Article  PubMed  Google Scholar 

  43. Parekh RS, Flynn JT, Smoyer WE, Milne JL, Kershaw DB, Bunchman TE, et al. Improved growth in young children with severe chronic renal insufficiency who use specified nutritional therapy. J Am Soc Nephrol. 2001;12:2418–26.

    PubMed  CAS  Google Scholar 

  44. Abitbol CL, Zilleruelo G, Montane B, Strauss J. Growth of uremic infants on forced feeding regimens. Pediatr Nephrol. 1993;7:173–7.

    Article  PubMed  CAS  Google Scholar 

  45. Brewer ED. Growth of small children managed with chronic peritoneal dialysis and nasogastric tube feedings: 203-Month experience in 14 patients. Adv Perit Dial. 1990;6:269–72.

    PubMed  CAS  Google Scholar 

  46. Argente J, Mehls O, Barrios V. Growth and body composition in very young SGA children. Pediatr Nephrol. 2010;25:679–85.

    Article  PubMed  Google Scholar 

  47. Karlberg J, Schaefer F, Hennicke M, Wingen AM, Rigden S, Mehls O. Early age-dependent growth impairment in chronic renal failure. European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. Pediatr Nephrol. 1996;10:283–7.

    PubMed  CAS  Google Scholar 

  48. Santos F, Moreno ML, Neto A, et al. Improvement in growth after 1 year of growth hormone therapy in well-nourished infants with growth retardation secondary to chronic renal failure: results of a multicenter, controlled, randomized, open clinical trial. Clin J Am Soc Nephrol. 2010;5:1190–7.

    Article  PubMed  CAS  Google Scholar 

  49. Rosenfeld RG, Bakker B. Compliance and persistence in pediatric and adult patients receiving growth hormone therapy. Endocr Pract. 2008;14:143–54.

    PubMed  Google Scholar 

  50. Edefonti A, Mastrangelo A, Paglialonga F. Assessment and monitoring of nutrition status in pediatric peritoneal dialysis patients. Perit Dial Int. 2009;29 Suppl 2:S176–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Mejía-Gaviria M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mejía-Gaviria, N., Ordoñez, F.Á., Santos, F. (2013). Hormone Therapy to Improve Growth in Infants with Chronic Kidney Disease. In: Watson, R., Grimble, G., Preedy, V., Zibadi, S. (eds) Nutrition in Infancy. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-254-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-254-4_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-253-7

  • Online ISBN: 978-1-62703-254-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics