Skip to main content

Markers of Cellular Senescence

  • Protocol
  • First Online:
Cell Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 965))

Abstract

Cellular senescence is a tumor suppression mechanism that evolved to limit duplication in somatic cells. Senescence is imposed by natural replicative boundaries or stress-induced signals, such as oncogenic transformation. Neoplastic cells can be forced to undergo senescence through genetic manipulations and epigenetic factors, including anticancer drugs, radiation, and differentiating agents. Senescent cells show distinct phenotypic and molecular characteristics, both in vitro or in vivo. These biomarkers might either cause or result from senescence induction, but could also be the byproducts of physiological changes in these non-replicating cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  PubMed  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  3. Untergasser G, Koch HB, Menssen A, Hermeking H (2002) Characterization of epithelial senescence by serial analysis of gene expression: identification of genes potentially involved in prostate cancer. Cancer Res 62:6255–6262

    PubMed  CAS  Google Scholar 

  4. Mason DX, Jackson TJ, Lin AW (2004) Molecular signature of oncogenic ras-induced senescence. Oncogene 23:9238–9246

    PubMed  CAS  Google Scholar 

  5. Schwarze SR, Fu VX, Desotelle JA, Kenowski ML, Jarrard DF (2005) The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. Neoplasia 7:816–823

    Article  PubMed  CAS  Google Scholar 

  6. Ruiz L, Traskine M, Ferrer I, Castro E, Leal JF, Kaufman M, Carnero A (2008) Characterization of the p53 response to oncogene-induced senescence. PLoS One 3:e3230

    Article  PubMed  CAS  Google Scholar 

  7. Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23:2919–2933

    Article  PubMed  CAS  Google Scholar 

  8. Zhang W, Ji W, Yang J, Yang L, Chen W, Zhuang Z (2008) Comparison of global DNA methylation profiles in replicative versus premature senescence. Life Sci 83:475–480

    Article  PubMed  CAS  Google Scholar 

  9. Carnero A, Lleonart ME (2011) Epigenetic mechanisms in senescence, immortalisation and cancer. Biol Rev Camb Philos Soc 86:443–455

    Article  PubMed  Google Scholar 

  10. Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    Article  PubMed  CAS  Google Scholar 

  11. Zhang H, Pan KH, Cohen SN (2003) Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proc Natl Acad Sci U S A 100:3251–3256

    Article  PubMed  CAS  Google Scholar 

  12. d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522

    Article  PubMed  CAS  Google Scholar 

  13. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  CAS  Google Scholar 

  14. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14:501–513

    Article  PubMed  CAS  Google Scholar 

  15. Campisi J, Andersen JK, Kapahi P, Melov S (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 21:354–359

    PubMed  CAS  Google Scholar 

  16. Campisi J (2011) Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 21:107–112

    Article  PubMed  CAS  Google Scholar 

  17. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98:12072–12077

    Article  PubMed  CAS  Google Scholar 

  18. Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S, Nelson PS (2006) The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66:794–802

    Article  PubMed  CAS  Google Scholar 

  19. Parrinello S, Coppe JP, Krtolica A, Campisi J (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118:485–496

    Article  PubMed  CAS  Google Scholar 

  20. Coppe JP, Patil CK, Rodier F, Krtolica A, Beausejour CM, Parrinello S, Hodgson JG, Chin K, Desprez PY, Campisi J (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 5:e9188

    Article  PubMed  CAS  Google Scholar 

  21. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  PubMed  CAS  Google Scholar 

  22. Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  PubMed  CAS  Google Scholar 

  23. Davalos AR, Coppe JP, Campisi J, Desprez PY (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 29:273–283

    Article  PubMed  Google Scholar 

  24. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    Article  PubMed  CAS  Google Scholar 

  25. Castro P, Giri D, Lamb D, Ittmann M (2003) Cellular senescence in the pathogenesis of benign prostatic hyperplasia. Prostate 55:30–38

    Article  PubMed  CAS  Google Scholar 

  26. Michaloglou C, Vredeveld LC, Mooi WJ, Peeper DS (2008) BRAF(E600) in benign and malignant human tumours. Oncogene 27:877–895

    Article  PubMed  CAS  Google Scholar 

  27. Thomas E, al-Baker E, Dropcova S, Denyer S, Ostad N, Lloyd A, Kill IR, Faragher RG (1997) Different kinetics of senescence in human fibroblasts and peritoneal mesothelial cells. Exp Cell Res 236:355–358

    Article  PubMed  CAS  Google Scholar 

  28. Rubin H (2002) The disparity between human cell senescence in vitro and lifelong replication in vivo. Nat Biotechnol 20:675–681

    Article  PubMed  CAS  Google Scholar 

  29. Wright WE, Shay JW (1995) Time, telomeres and tumours: is cellular senescence more than an anticancer mechanism? Trends Cell Biol 5:293–297

    Article  PubMed  CAS  Google Scholar 

  30. Kipling D, Wynford-Thomas D, Jones CJ, Akbar A, Aspinall R, Bacchetti S, Blasco MA, Broccoli D, DePinho RA, Edwards DR, Effros RB, Harley CB, Lansdorp PM, Linskens MH, Prowse KR, Newbold RF, Olovnikov AM, Parkinson EK, Pawelec G, Ponten J, Shall S, Zijlmans M, Faragher RG (1999) Telomere-dependent senescence. Nat Biotechnol 17:313–314

    Article  PubMed  CAS  Google Scholar 

  31. Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    Article  PubMed  CAS  Google Scholar 

  32. Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6:472–476

    Article  PubMed  CAS  Google Scholar 

  33. Carnero A, Link W, Martinez JF, Renner O, Castro ME, Blanco F et al (2003) Cellular senescence and cancer. Adv Cancer Res 3:183–198

    Google Scholar 

  34. Chandeck C, Mooi WJ (2010) Oncogene-induced cellular senescence. Adv Anat Pathol 17:42–48

    PubMed  CAS  Google Scholar 

  35. Braig M, Schmitt CA (2006) Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 66:2881–2884

    Article  PubMed  CAS  Google Scholar 

  36. Courtois-Cox S, Jones SL, Cichowski K (2008) Many roads lead to oncogene-induced senescence. Oncogene 27:2801–2809

    Article  PubMed  CAS  Google Scholar 

  37. Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26:7773–7779

    Article  PubMed  CAS  Google Scholar 

  38. Ruzankina Y, Asare A, Brown EJ (2008) Replicative stress, stem cells and aging. Mech Ageing Dev 129:460–466

    Article  PubMed  CAS  Google Scholar 

  39. Kenyon J, Gerson SL (2007) The role of DNA damage repair in aging of adult stem cells. Nucleic Acids Res 35:7557–7565

    Article  PubMed  CAS  Google Scholar 

  40. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d’Adda di Fagagna F (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642

    Article  PubMed  CAS  Google Scholar 

  41. Wei S, Sedivy JM (1999) Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts. Cancer Res 59:1539–1543

    PubMed  CAS  Google Scholar 

  42. Shay JW, Wright WE (2002) Telomerase: a target for cancer therapeutics. Cancer Cell 2:257–265

    Article  PubMed  CAS  Google Scholar 

  43. Di Leonardo A, Linke SP, Clarkin K, Wahl GM (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8:2540–2551

    Article  PubMed  Google Scholar 

  44. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  PubMed  CAS  Google Scholar 

  45. Robles SJ, Adami GR (1998) Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16:1113–1123

    Article  PubMed  CAS  Google Scholar 

  46. Serrano M, Blasco MA (2001) Putting the stress on senescence. Curr Opin Cell Biol 13:748–753

    Article  PubMed  CAS  Google Scholar 

  47. Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113:160–168

    PubMed  CAS  Google Scholar 

  48. Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976

    Article  PubMed  CAS  Google Scholar 

  49. Passos JF, Von Zglinicki T (2006) Oxygen free radicals in cell senescence: are they signal transducers? Free Radic Res 40:1277–1283

    Article  PubMed  CAS  Google Scholar 

  50. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747

    Article  PubMed  CAS  Google Scholar 

  51. Vergel M, Carnero A (2010) Bypassing cellular senescence by genetic screening tools. Clin Transl Oncol 12:410–417

    Article  PubMed  Google Scholar 

  52. Malumbres M, Carnero A (2003) Cell cycle deregulation: a common motif in cancer. Prog Cell Cycle Res 5:5–18

    PubMed  Google Scholar 

  53. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    Article  PubMed  CAS  Google Scholar 

  54. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    Article  PubMed  CAS  Google Scholar 

  55. Blanco-Aparicio C, Canamero M, Cecilia Y, Pequeno B, Renner O, Ferrer I, Carnero A (2010) Exploring the gain of function contribution of AKT to mammary tumorigenesis in mouse models. PLoS One 5:e9305

    Article  PubMed  CAS  Google Scholar 

  56. Smith JR, Pereira-Smith OM (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273:63–67

    Article  PubMed  CAS  Google Scholar 

  57. Duncan EL, Whitaker NJ, Moy EL, Reddel RR (1993) Assignment of SV40-immortalized cells to more than one complementation group for immortalization. Exp Cell Res 205:337–344

    Article  PubMed  CAS  Google Scholar 

  58. Barrett JC, Annab LA, Alcorta D, Preston G, Vojta P, Yin Y (1994) Cellular senescence and cancer. Cold Spring Harb Symp Quant Biol 59:411–418

    Article  PubMed  CAS  Google Scholar 

  59. Schmitt CA (2007) Cellular senescence and cancer treatment. Biochim Biophys Acta 1775:5–20

    PubMed  CAS  Google Scholar 

  60. Mooi WJ, Peeper DS (2006) Oncogene-induced cell senescence–halting on the road to cancer. N Engl J Med 355:1037–1046

    Article  PubMed  CAS  Google Scholar 

  61. Castro ME, Ferrer I, Cascon A, Guijarro MV, Lleonart M, Ramón y Cajal S, Leal JF, Robledo M, Carnero A (2008) PPP1CA contributes to the senescence program induced by oncogenic Ras. Carcinogenesis 29:491–499

    Article  PubMed  CAS  Google Scholar 

  62. Leal JF, Ferrer I, Blanco-Aparicio C, Hernandez-Losa J, Ramon YCS, Carnero A, Lleonart ME (2008) S-adenosylhomocysteine hydrolase downregulation contributes to tumorigenesis. Carcinogenesis 29:2089–2095

    Article  PubMed  CAS  Google Scholar 

  63. LLeonart ME, Vidal F, Gallardo D, Diaz-Fuertes M, Rojo F, Cuatrecasas M, Lopez-Vicente L, Kondoh H, Blanco C, Carnero A, Ramón y Cajal S (2006) New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncol Rep 16:603–608

    PubMed  CAS  Google Scholar 

  64. Leal JF, Fominaya J, Cascon A, Guijarro MV, Blanco-Aparicio C, Lleonart M, Castro ME, Ramon YCS, Robledo M, Beach DH, Carnero A (2008) Cellular senescence bypass screen identifies new putative tumor suppressor genes. Oncogene 27:1961–1970

    Article  PubMed  CAS  Google Scholar 

  65. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65:177–185

    PubMed  CAS  Google Scholar 

  66. Fridman AL, Rosati R, Li Q, Tainsky MA (2007) Epigenetic and functional analysis of IGFBP3 and IGFBPrP1 in cellular immortalization. Biochem Biophys Res Commun 357:785–791

    Article  PubMed  CAS  Google Scholar 

  67. Kortlever RM, Bernards R (2006) Senescence, wound healing and cancer: the PAI-1 connection. Cell Cycle 5:2697–2703

    Article  PubMed  CAS  Google Scholar 

  68. Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:877–884

    Article  PubMed  CAS  Google Scholar 

  69. Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S, Sun P (2002) Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol 22:3389–3403

    Article  PubMed  CAS  Google Scholar 

  70. Haq R, Brenton JD, Takahashi M, Finan D, Finkielsztein A, Damaraju S, Rottapel R, Zanke B (2002) Constitutive p38HOG mitogen-activated protein kinase activation induces permanent cell cycle arrest and senescence. Cancer Res 62:5076–5082

    PubMed  CAS  Google Scholar 

  71. Zhang H, Cohen SN (2004) Smurf2 up-regulation activates telomere-dependent senescence. Genes Dev 18:3028–3040

    Article  PubMed  CAS  Google Scholar 

  72. Shibanuma M, Mochizuki E, Maniwa R, Mashimo J, Nishiya N, Imai S, Takano T, Oshimura M, Nose K (1997) Induction of senescence-like phenotypes by forced expression of hic-5, which encodes a novel LIM motif protein, in immortalized human fibroblasts. Mol Cell Biol 17:1224–1235

    PubMed  CAS  Google Scholar 

  73. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  PubMed  CAS  Google Scholar 

  74. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12:3008–3019

    Article  PubMed  CAS  Google Scholar 

  75. Lin AW, Lowe SW (2001) Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation. Proc Natl Acad Sci U S A 98:5025–5030

    Article  PubMed  CAS  Google Scholar 

  76. Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406:207–210

    Article  PubMed  CAS  Google Scholar 

  77. Wynford-Thomas D (1996) p53: guardian of cellular senescence. J Pathol 180:118–121

    Article  PubMed  CAS  Google Scholar 

  78. Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F (1996) Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13:2097–2104

    PubMed  CAS  Google Scholar 

  79. Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97:527–538

    Article  PubMed  CAS  Google Scholar 

  80. Ashcroft M, Taya Y, Vousden KH (2000) Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol 20:3224–3233

    Article  PubMed  CAS  Google Scholar 

  81. Blaydes JP, Wynford-Thomas D (1998) The proliferation of normal human fibroblasts is dependent upon negative regulation of p53 function by mdm2. Oncogene 16:3317–3322

    Article  PubMed  CAS  Google Scholar 

  82. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659

    Article  PubMed  CAS  Google Scholar 

  83. Carnero A, Hudson JD, Price CM, Beach DH (2000) p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2:148–155

    Article  PubMed  CAS  Google Scholar 

  84. Carnero A, Beach DH (2004) Absence of p21WAF1 cooperates with c-myc in bypassing Ras-induced senescence and enhances oncogenic cooperation. Oncogene 23:6006–6011

    Article  PubMed  CAS  Google Scholar 

  85. Pantoja C, Serrano M (1999) Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18:4974–4982

    Article  PubMed  CAS  Google Scholar 

  86. Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834

    Article  PubMed  CAS  Google Scholar 

  87. Ho JS, Ma W, Mao DY, Benchimol S (2005) p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25:7423–7431

    Article  PubMed  CAS  Google Scholar 

  88. Vergel M, Marin JJ, Estevez P, Carnero A (2010) Cellular senescence as a target in cancer control. J Aging Res 2011:725365

    PubMed  Google Scholar 

  89. Sionov RV, Haupt Y (1999) The cellular response to p53: the decision between life and death. Oncogene 18:6145–6157

    Article  PubMed  CAS  Google Scholar 

  90. Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH, Levine AJ (2000) The transcriptional program following p53 activation. Cold Spring Harb Symp Quant Biol 65:475–482

    Article  PubMed  CAS  Google Scholar 

  91. Chen X, Ko LJ, Jayaraman L, Prives C (1996) p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 10:2438–2451

    Article  PubMed  CAS  Google Scholar 

  92. Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, Taya Y (2000) p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102:849–862

    Article  PubMed  CAS  Google Scholar 

  93. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD (1999) Microarray analysis of replicative senescence. Curr Biol 9:939–945

    Article  PubMed  CAS  Google Scholar 

  94. Schwarze SR, DePrimo SE, Grabert LM, Fu VX, Brooks JD, Jarrard DF (2002) Novel pathways associated with bypassing cellular senescence in human prostate epithelial cells. J Biol Chem 277:14877–14883

    Article  PubMed  CAS  Google Scholar 

  95. de Magalhaes JP, Chainiaux F, de Longueville F, Mainfroid V, Migeot V, Marcq L, Remacle J, Salmon M, Toussaint O (2004) Gene expression and regulation in H2O2-induced premature senescence of human foreskin fibroblasts expressing or not telomerase. Exp Gerontol 39:1379–1389

    Article  PubMed  CAS  Google Scholar 

  96. Collado M, Serrano M (2005) The senescent side of tumor suppression. Cell Cycle 4:1722–1724

    Article  PubMed  CAS  Google Scholar 

  97. Darbro BW, Schneider GB, Klingelhutz AJ (2005) Co-regulation of p16INK4A and migratory genes in culture conditions that lead to premature senescence in human keratinocytes. J Invest Dermatol 125:499–509

    Article  PubMed  CAS  Google Scholar 

  98. Franco N, Lamartine J, Frouin V, Le Minter P, Petat C, Leplat JJ, Libert F, Gidrol X, Martin MT (2005) Low-dose exposure to gamma rays induces specific gene regulations in normal human keratinocytes. Radiat Res 163:623–635

    Article  PubMed  CAS  Google Scholar 

  99. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2:103–112

    Article  PubMed  CAS  Google Scholar 

  100. Serrano M (2003) Proliferation: the cell cycle. Adv Exp Med Biol 532:13–17

    Article  PubMed  CAS  Google Scholar 

  101. Classon M, Harlow E (2002) The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2:910–917

    Article  PubMed  CAS  Google Scholar 

  102. Classon M, Salama S, Gorka C, Mulloy R, Braun P, Harlow E (2000) Combinatorial roles for pRB, p107, and p130 in E2F-mediated cell cycle control. Proc Natl Acad Sci U S A 97:10820–10825

    Article  PubMed  CAS  Google Scholar 

  103. Jarrard DF, Sarkar S, Shi Y, Yeager TR, Magrane G, Kinoshita H, Nassif N, Meisner L, Newton MA, Waldman FM, Reznikoff CA (1999) p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res 59:2957–2964

    PubMed  CAS  Google Scholar 

  104. Haferkamp S, Tran SL, Becker TM, Scurr LL, Kefford RF, Rizos H (2009) The relative contributions of the p53 and pRb pathways in oncogene-induced melanocyte senescence. Aging (Albany NY) 1:542–556

    CAS  Google Scholar 

  105. Ye X, Zerlanko B, Zhang R, Somaiah N, Lipinski M, Salomoni P, Adams PD (2007) Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Mol Cell Biol 27:2452–2465

    Article  PubMed  CAS  Google Scholar 

  106. Mulligan G, Jacks T (1998) The retinoblastoma gene family: cousins with overlapping interests. Trends Genet 14:223–229

    Article  PubMed  CAS  Google Scholar 

  107. Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8:671–682

    Article  PubMed  CAS  Google Scholar 

  108. Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T (2003) Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424:223–228

    Article  PubMed  CAS  Google Scholar 

  109. Carnero A, Hannon GJ (1998) The INK4 family of CDK inhibitors. Curr Top Microbiol Immunol 227:43–55

    Article  PubMed  CAS  Google Scholar 

  110. Palmero I, McConnell B, Parry D, Brookes S, Hara E, Bates S, Jat P, Peters G (1997) Accumulation of p16INK4a in mouse fibroblasts as a function of replicative senescence and not of retinoblastoma gene status. Oncogene 15:495–503

    Article  PubMed  CAS  Google Scholar 

  111. Okamoto A, Demetrick DJ, Spillare EA, Hagiwara K, Hussain SP, Bennett WP, Forrester K, Gerwin B, Greenblatt MS, Serrano M et al (1994) p16INK4 mutations and altered expression in human tumors and cell lines. Cold Spring Harb Symp Quant Biol 59:49–57

    Article  PubMed  CAS  Google Scholar 

  112. Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A (2001) Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413:83–86

    Article  PubMed  CAS  Google Scholar 

  113. Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW, DePinho RA (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413:86–91

    Article  PubMed  CAS  Google Scholar 

  114. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168

    Article  PubMed  CAS  Google Scholar 

  115. Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856

    Article  PubMed  CAS  Google Scholar 

  116. Bernard D, Martinez-Leal JF, Rizzo S, Martinez D, Hudson D, Visakorpi T, Peters G, Carnero A, Beach D, Gil J (2005) CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene 24:5543–5551

    Article  PubMed  CAS  Google Scholar 

  117. Alani RM, Young AZ, Shifflett CB (2001) Id1 regulation of cellular senescence through transcriptional repression of p16/Ink4a. Proc Natl Acad Sci U S A 98:7812–7816

    Article  PubMed  CAS  Google Scholar 

  118. Cummings SD, Ryu B, Samuels MA, Yu X, Meeker AK, Healey MA, Alani RM (2008) Id1 delays senescence of primary human melanocytes. Mol Carcinog 47:653–659

    Article  PubMed  CAS  Google Scholar 

  119. Amati B, Alevizopoulos K, Vlach J (1998) Myc and the cell cycle. Front Biosci 3:d250–d268

    PubMed  CAS  Google Scholar 

  120. Wang J, Xie LY, Allan S, Beach D, Hannon GJ (1998) Myc activates telomerase. Genes Dev 12:1769–1774

    Article  PubMed  CAS  Google Scholar 

  121. Gil J, Kerai P, Lleonart M, Bernard D, Cigudosa JC, Peters G, Carnero A, Beach D (2005) Immortalization of primary human prostate epithelial cells by c-Myc. Cancer Res 65:2179–2185

    Article  PubMed  CAS  Google Scholar 

  122. Feliciano A, Sanchez-Sendra B, Kondoh H, Lleonart ME (2011) MicroRNAs regulate key effector pathways of senescence. J Aging Res 2011:205378

    PubMed  Google Scholar 

  123. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y, Nielsen FC, Oren M, Lund AH (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17:236–245

    Article  PubMed  CAS  Google Scholar 

  124. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-­suppressor genes. Curr Biol 17:1298–1307

    Article  PubMed  CAS  Google Scholar 

  125. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 104:15472–15477

    Article  PubMed  CAS  Google Scholar 

  126. Martinez I, Cazalla D, Almstead LL, Steitz JA, DiMaio D (2011) miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci U S A 108:522–527

    Article  PubMed  CAS  Google Scholar 

  127. Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W, Dessureault S, Moscinski LC, Rezania D, Dalton WS, Sotomayor E, Tao J, Cheng JQ (2010) microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115:2630–2639

    Article  PubMed  CAS  Google Scholar 

  128. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104:15805–15810

    Article  PubMed  CAS  Google Scholar 

  129. Marasa BS, Srikantan S, Martindale JL, Kim MM, Lee EK, Gorospe M, Abdelmohsen K (2010) MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging (Albany NY) 2:333–343

    CAS  Google Scholar 

  130. Noonan EJ, Place RF, Basak S, Pookot D, Li LC (2010) miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget 1:349–358

    PubMed  Google Scholar 

  131. Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, Giardina C, Dahiya R (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28:1714–1724

    Article  PubMed  CAS  Google Scholar 

  132. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C, Volinia S, Liu CG, Schnittger S, Haferlach T, Liso A, Diverio D, Mancini M, Meloni G, Foa R, Martelli MF, Mecucci C, Croce CM, Falini B (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 105:3945–3950

    Article  PubMed  CAS  Google Scholar 

  133. Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G, Lauro R, Federici M (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120:1524–1532

    Article  PubMed  CAS  Google Scholar 

  134. Borgdorff V, Lleonart ME, Bishop CL, Fessart D, Bergin AH, Overhoff MG, Beach DH (2010) Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene 29:2262–2271

    Article  PubMed  CAS  Google Scholar 

  135. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124:1169–1181

    Article  PubMed  CAS  Google Scholar 

  136. Cho WJ, Shin JM, Kim JS, Lee MR, Hong KS, Lee JH, Koo KH, Park JW, Kim KS (2009) miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol Cells 28:521–527

    Article  PubMed  CAS  Google Scholar 

  137. Leal JA, Feliciano A, Lleonart ME (2011) Stem cell MicroRNAs in senescence and immortalization: novel players in cancer therapy. Med Res Rev

    Google Scholar 

  138. Baylin SB, Belinsky SA, Herman JG (2000) Aberrant methylation of gene promoters in cancer–concepts, misconcepts, and promise. J Natl Cancer Inst 92:1460–1461

    Article  PubMed  CAS  Google Scholar 

  139. Brummelkamp TR, Berns K, Hijmans EM, Mullenders J, Fabius A, Heimerikx M, Velds A, Kerkhoven RM, Madiredjo M, Bernards R, Beijersbergen RL (2004) Functional identification of cancer-relevant genes through large-scale RNA interference screens in mammalian cells. Cold Spring Harb Symp Quant Biol 69:439–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish Ministry of Science and Innovation and FEDER Funds (SAF2009-08605), Consejeria de Ciencia e Innovacion and Consejeria de Salud of the Junta de Andalucia (CTS-6844 and PI-0142). AC’s laboratory is also funded by a fellowship from Fundacion Oncologica FERO, supported by Fundació Josep Botet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amancio Carnero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Busincess Media, LLC

About this protocol

Cite this protocol

Carnero, A. (2013). Markers of Cellular Senescence. In: Galluzzi, L., Vitale, I., Kepp, O., Kroemer, G. (eds) Cell Senescence. Methods in Molecular Biology, vol 965. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-239-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-239-1_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-238-4

  • Online ISBN: 978-1-62703-239-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics