Skip to main content

Raman Spectroscopy for the Detection of AGEs/ALEs

  • Protocol
  • First Online:
Cell Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 965))

Abstract

Raman spectroscopy is a noninvasive, nondestructive tool for capturing multiplexed biochemical information across diverse molecular species including proteins, lipids, DNA, and mineralizations. Based on light scattering from molecules, cells, and tissues, it is possible to detect molecular fingerprints and discriminate between subtly different members of each biochemical class. Raman spectroscopy is ideal for detecting perturbations from the expected molecular structure such as those occurring during senescence and the modification of long-lived proteins by metabolic intermediates as we age. Here, we describe the sample preparation, data acquisition, signal processing, data analysis and interpretation involved in using Raman spectroscopy for detecting age-related protein modifications in complex biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monnier VM, Sell DR, Genuth S (2005) Glycation products as markers and predictors of the progression of diabetic complications. Ann N Y Acad Sci 1043:567–581

    Article  PubMed  CAS  Google Scholar 

  2. Stitt AW (2010) AGEs and diabetic retinopathy. Invest Ophthalmol Vis Sci 51:4867–4874

    Article  PubMed  Google Scholar 

  3. Aldini G, Dalle-Donne I, Facino RM, Milzani A, Carini M (2007) Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Med Res Rev 27:817–868

    Article  PubMed  CAS  Google Scholar 

  4. Glenn JV, Beattie JR, Barrett L, Frizzell N, Thorpe SR, Boulton ME, McGarvey JJ, Stitt AW (2007) Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch’s membrane leading to accurate, nondestructive prediction of ocular aging. FASEB J 21:3542–3552

    Article  PubMed  CAS  Google Scholar 

  5. Beattie JR, Pawlak AM, McGarvey JJ, Stitt AW (2011) Sclera as a surrogate marker for determining AGE-modifications in Bruch’s membrane using a Raman spectroscopy-based index of aging. Invest Ophthalmol Vis Sci 52:1593–1598

    Article  PubMed  CAS  Google Scholar 

  6. Beattie JR, Pawlak AM, Boulton ME, Zhang J, Monnier VM, Stitt AW, McGarvey JJ (2010) Multiplex analysis of age-related protein and lipid modifications in human Bruch’s membrane. FASEB J 24:4816–4824

    Article  PubMed  CAS  Google Scholar 

  7. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S (eds) (2006) Multi- and megavariate data analysis part II: advanced applications and method extensions, second revised and enlarged edition, vol 2, 2nd edn. Umea, Umetrics

    Google Scholar 

  8. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S (eds) (2006) Multi- and megavariate data analysis part i: basic principles and applications, second revised and enlarged edition, vol 1, 2nd edn. Umea, Umetrics

    Google Scholar 

  9. Suttnar J, Cermak J, Dyr JE (1997) Solid-phase extraction in malondialdehyde analysis. Anal Biochem 249:20–23

    Article  PubMed  CAS  Google Scholar 

  10. Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H (1997) Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol 150:523–531

    PubMed  CAS  Google Scholar 

  11. Degenhardt TP, Grass L, Reddy S, Thorpe SR, Diamandis EP, Baynes JW (1997) The serum concentration of the advanced glycation end-product N epsilon-(carboxymethyl)lysine is increased in uremia. Kidney Int 52:1064–1067

    Article  PubMed  CAS  Google Scholar 

  12. Dunn JA, McCance DR, Thorpe SR, Lyons TJ, Baynes JW (1991) Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon-(carboxymethyl)hydroxylysine in human skin collagen. Biochemistry 30:1205–1210

    Article  PubMed  CAS  Google Scholar 

  13. McCreery RL (2000) Raman spectroscopy for chemical analysis, 1st edn. Wiley, New York

    Book  Google Scholar 

  14. Beattie JR (2011) Optimising reproducibility in low quality signals without smoothing; an alternative paradigm for signal processing. J Raman Spec 42:1419–1427

    Article  CAS  Google Scholar 

  15. Beattie JR, Glenn JV, Boulton ME, Stitt AW, McGarvey JJ (2009) Effect of signal intensity normalization on the multivariate analysis of spectral data in complex ‘real-world’ datasets. J Raman Spec 40:429–435

    Article  CAS  Google Scholar 

  16. Tu AT (1982) Raman spectroscopy in biology: principles and applications. Wiley, New York

    Google Scholar 

  17. Bell SB, Beattie JR, McGarvey JJ, Peters KL, Sirimuthu NMS, Speers SJ (2004) Development of sampling methods for Raman analysis of solid dosage forms of therapeutic and illicit drugs. J Raman Spec 35:409–417

    Article  CAS  Google Scholar 

  18. Jirasek A, Schulze G, Yu MML, Blades W, Turner RFB (2004) Accuracy and precision of manual baseline determination. Appl Spectrosc 58:1488–1499

    Article  PubMed  CAS  Google Scholar 

  19. Lieber CA, Mahadevan-Jansen A (2003) Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc 57:1363–1367

    Article  PubMed  CAS  Google Scholar 

  20. Pawlak AM, Beattie JR, Glenn JV, Stitt AW, McGarvey JJ (2008) Raman spectroscopy of advanced glycation end products (AGEs), possible markers for progressive retinal dysfunction. J Raman Spec 39:1635–1642

    Article  CAS  Google Scholar 

  21. Bell SEJ, Sirimuthu NMS (2008) Quantitative surface-enhanced Raman spectroscopy. Chem Soc Rev 37:1012–1024

    Article  PubMed  CAS  Google Scholar 

  22. Wood BR, McNaughton D (2006) Resonance Raman spectroscopy in malaria research. Expert Rev Proteomics 3:525–544

    Article  PubMed  CAS  Google Scholar 

  23. Stadler J, Schmid T, Zenobi R (2012) Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale 4:1856–1870. doi:10.1039/C1031NR11143D

    Article  PubMed  CAS  Google Scholar 

  24. Bell SEJ, Bourguignon ESO, Dennis A (1998) Analysis of luminescent samples using subtracted shifted Raman spectroscopy. Analyst 123:1729–1734

    Article  CAS  Google Scholar 

  25. Matousek P, Morris MD, Everall N, Clark IP, Towrie M, Draper E, Goodship A, Parker AW (2005) Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc 59:1485–1492

    Article  PubMed  CAS  Google Scholar 

  26. Everall N, Matousek P, MacLeod N, Ronayne KL, Clark IP (2010) Temporal and spatial resolution in transmission Raman spectroscopy. Appl Spectrosc 64:52–60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported by grants from the BBSRC, UK (JREI 18471) R&D Office, Northern Ireland (SPI/2384/03) and the Medical Research Council (MRC), UK (G0600053). Leverhulme Trust (EM/2006/0049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan W. Stitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Busincess Media, LLC

About this protocol

Cite this protocol

Beattie, J.R., McGarvey, J.J., Stitt, A.W. (2013). Raman Spectroscopy for the Detection of AGEs/ALEs. In: Galluzzi, L., Vitale, I., Kepp, O., Kroemer, G. (eds) Cell Senescence. Methods in Molecular Biology, vol 965. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-239-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-239-1_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-238-4

  • Online ISBN: 978-1-62703-239-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics