Skip to main content

Intestinal Development and Permeability: Role in Nutrition of Preterm Infants

  • Chapter
  • First Online:
Nutrition in Infancy

Part of the book series: Nutrition and Health ((NH))

  • 2384 Accesses

Abstract

Preterm birth necessitates that fetal organ development occur in the extra-uterine environment. This circumstance poses significant risk for gastrointestinal (GI) system development as this system doubles in length from 25 to 40 weeks’ gestation. The most severe consequence of preterm intestinal development is necrotizing enterocolitis (NEC)—an inflammatory cascade that leads to ischemia/necrosis of the intestines. This disease is found in 7–10 % of very low birth weight (VLBW) infants and is associated with 33 % mortality and 33 % long-term GI and/or neurodevelopmental morbidity. The two protective factors consistently identified to decrease risk for NEC are prolonged gestation and human milk feeds. Investigation into the mechanism of NEC has dominated the study of preterm infant intestinal development. Within this context, intestinal maturation and specifically intestinal permeability have been studied for 20 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behrens RH, Docherty H, Elia M, et al. A simple enzymatic method for the assay of urinary lactulose. Clin Chim Acta. 1984;137:361–7.

    Article  PubMed  CAS  Google Scholar 

  2. Lunn PG, Northrop CA, Northrop AJ. Automated enzymatic assays for the determination of intestinal permeability probes in urine. 2. Mannitol. Clin Chim Acta. 1989;183:163–70.

    Article  PubMed  CAS  Google Scholar 

  3. Shulman RJ, Schanler RJ, Lau C, et al. Early feeding, antenatal glucocorticoids, and human milk decrease intestinal permeability in preterm infants. Pediatr Res. 1998;44:519–23.

    Article  PubMed  CAS  Google Scholar 

  4. Catassi C, Bonucci A, Coppa V, et al. Intestinal permeability changes during the first month: effect of natural versus artificial feeding. J Pediatr Gastroenterol Nutr. 1995;21:383–6.

    Article  PubMed  CAS  Google Scholar 

  5. Weaver LT, Laker MF, Nelson R. Intestinal permeability in the newborn. Arch Dis Child. 1984;59:236–41.

    Article  PubMed  CAS  Google Scholar 

  6. Van Elburg RM, Fetter WP, Bunkers CM, Heymans HS. Intestinal permeability in relation to birth weight and gestational and postnatal age. Arch Dis Child Fetal Neonatal Ed. 2003;88:F52–5.

    Article  PubMed  Google Scholar 

  7. Corpeleijn WE, van Elburg RM, Kema IP, van Goudovever JB. Assessment of intestinal permeability in (premature) neonates by sugar absorption tests. Methods Mol Biol. 2011;763:95–104.

    Article  PubMed  CAS  Google Scholar 

  8. Van Goudoever JB, Corpeleijn W, Riedijk M, Schaart M, Renes I, van der Schoor S. The impact of enteral insulin-like growth factor 1 and nutrition on gut permeability and amino acid utilization. J Nutr. 2008;138:1829S–33.

    PubMed  Google Scholar 

  9. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary compounds. J Nutr. 2011;141:769–76.

    Article  PubMed  CAS  Google Scholar 

  10. Suenaert P, Bulteel V, Lemmens L, et al. Anti-tumor necrosis factor treatment restores the gut barrier in Crohn’s disease. Am J Gastroenterol. 2002;97:2000–4.

    Article  PubMed  CAS  Google Scholar 

  11. Vogelsang H, Schwarzenhofer M, Oberhuber G. Changes in gastrointestinal permeability in celiac disease. Dig Dis. 1998;16:333–6.

    Article  PubMed  CAS  Google Scholar 

  12. Damci T, Nuhoglu I, Devranoglu G, et al. Increased intestinal permeability as a cause of fluctuating postprandial blood glucose levels in Type 1 diabetic patients. Eur J Clin Invest. 2003;33:397–401.

    Article  PubMed  CAS  Google Scholar 

  13. Davin JC, Forget P, Mahieu PR. Increased intestinal permeability to (51 Cr) EDTA is correlated with IgA immune complex-plasma levels in children with IgA-associated nephropathies. Acta Paediatr Scand. 1988;77:118–24.

    Article  PubMed  CAS  Google Scholar 

  14. Yacyshyn B, Meddings J, Sadowski D, et al. Multiple sclerosis patients have peripheral blood CD45RO  +  B cells and increased intestinal permeability. Dig Dis Sci. 1996;41:2493–8.

    Article  PubMed  CAS  Google Scholar 

  15. Wagner CL, Taylor SN, Johnson D. Host factors in amniotic fluid and breast milk that contribute to gut maturation. Clin Rev Allergy Immunol. 2008;34:191–204.

    Article  PubMed  Google Scholar 

  16. Mulvihill SJ, Stone MM, Debas HT, et al. The role of amniotic fluid in fetal nutrition. J Pediatr Surg. 1985;20:668–72.

    Article  PubMed  CAS  Google Scholar 

  17. Pitkin R, Reynolds W. Fetal ingestion and metabolism of amniotic fluid protein. Am J Obstet Gynecol. 1975;123:356–63.

    PubMed  CAS  Google Scholar 

  18. Maheshwari A. Role of cytokines in human intestinal villous development. Clin Perinatol. 2004;31:1–11.

    Article  Google Scholar 

  19. Van den Berg A, Fetter WP, Westerbeek EA, et al. The effect of glutamine-enriched enteral nutrition on intestinal permeability in very-low-birth-weight infants: a randomized controlled trial. JPEN J Parenter Enteral Nutr. 2006;30:408–14.

    Article  PubMed  Google Scholar 

  20. Sevastiadou S, Malamitsi-Puchner A, Costalos C, et al. The impact of oral glutamine supplementation on the intestinal permeability and incidence of NEC/septicemia in premature neonates. J Matern Fetal Neonatal Med. 2011;24:1294–300. Epub 2011 Apr 4.

    Article  PubMed  CAS  Google Scholar 

  21. Corpeleijn WE, van Vliet I, de Gast-Bakker DA, et al. Effect of enteral IGF-1 supplementation on feeding tolerance, growth, and gut permeability in enterally fed premature neonates. J Pediatr Gastroenterol Nutr. 2008;46:184–90.

    Article  PubMed  CAS  Google Scholar 

  22. Barney CK, Lambert DK, Alder SC, et al. Treating feeding intolerance with an enteral solution patterned after human amniotic fluid: a randomized, controlled, masked trial. J Perinatol. 2007;27:28–31.

    Article  PubMed  CAS  Google Scholar 

  23. Neu J. Gastrointestinal maturation and implications for infant feeding. Early Hum Dev. 2007;83:767–75.

    Article  PubMed  CAS  Google Scholar 

  24. Bourlioux P, Koletzko B, Guarner F, et al. The intestine and its microflora are partners for the protection of the host: report on the Danone Symposium “The Intelligent Intestine” held in Paris, June 14, 2002. Am J Clin Nutr. 2003;78:675–83.

    PubMed  CAS  Google Scholar 

  25. Westerbeek EA, van den Berg A, Lafeber HN, et al. The effect of enteral supplementation of a prebiotic mixture of non-human milk galacto-, fructo-, and acidic oligosaccharides on intestinal permeability in preterm infants. Br J Nutr. 2011;105:268–74.

    Article  PubMed  CAS  Google Scholar 

  26. Boehm G, Moro G. Structural and functional aspects of prebiotics used in infant nutrition. J Nutr. 2008;138:1818S–28.

    PubMed  CAS  Google Scholar 

  27. Burger-van Paassen N, Vincent A, Puiman PJ, et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelia protection. Biochem J. 2009;420:211–9.

    Article  PubMed  CAS  Google Scholar 

  28. Sharma R, Young C, Neu J. Molecular modulaton of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol. 2010;2010:305879.

    PubMed  Google Scholar 

  29. Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2 driven improvement of gut permeability. Gut. 2009;58:1091–103.

    Article  PubMed  CAS  Google Scholar 

  30. Beach R, Menzies IS, Clayden GS, et al. Gastrointestinal permeability changes in the preterm neonate. Arch Dis Child. 1982;57:141–5.

    Article  PubMed  CAS  Google Scholar 

  31. Taylor SN, Basile LA, Ebeling M, Wagner CL. Intestinal permeability in preterm infants by feeding type: mother’s milk versus formula. Breastfeed Med. 2009;4:11–5.

    Article  PubMed  Google Scholar 

  32. Stratiki Z, Costalos C, Sevastiadou S, et al. The effect of a bifidobacter supplemented bovine milk on intestinal permeability of preterm infants. Early Hum Dev. 2007;83:575–9.

    Article  PubMed  CAS  Google Scholar 

  33. Rouwet EV, Heineman E, Buurman WA, et al. Intestinal permeability and carrier-mediated monosaccharide absorption in preterm neonates during the early postnatal period. Pediatr Res. 2002;51:64–70.

    Article  PubMed  CAS  Google Scholar 

  34. Van Elburg RM, van den Berg A, Bunkers CM, et al. Minimal enteral feeding, fetal blood flow pulsatility, and postnatal intestinal permeability in preterm infants with intrauterine growth retardation. Arch Dis Child Fetal Neonatal Ed. 2004;89(4):F293–6.

    Article  PubMed  Google Scholar 

  35. Insoft RM, Sanderson IR, Walker WA. Development of immune function in the intestine and its role in neonatal diseases. Pediatr Clin North Am. 1996;43:551–71.

    Article  PubMed  CAS  Google Scholar 

  36. Simmer K. Aggressive nutrition for preterm infants—benefits and risks. Early Hum Dev. 2007;83:631–4.

    Article  PubMed  CAS  Google Scholar 

  37. Ronnestad A, Abrahmsen TG, Medbo S, et al. Late onset septicarmia in a Norwegian national cohort of extremely premature infants receiving very early full human milk feeding. Pediatrics. 2005;115:269–76.

    Article  Google Scholar 

  38. Morgan J, Young L, McGuire W. Delayed introduction of progressive enteral feeds to prevent necrotizing enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2011;(issue 3):CD001970.

    Google Scholar 

  39. Tyson JE, Kennedy KA. Trophic feedings for parenterally fed infants. Cochrane Database Syst Rev. 2005;(issue 3):CD000504.

    Google Scholar 

  40. Hylander MA, Strobino DM, Dhanireddy R. Human milk feedings and infection among very low birth weight infants. Pediatrics. 1998;102:E38.

    Article  PubMed  CAS  Google Scholar 

  41. Schanler RJ, Shulman RJ, Lau C. Feeding strategies for premature infants: beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics. 1999;103:1150–7.

    Article  PubMed  CAS  Google Scholar 

  42. Meinzen-Derr J, Poindexter B, Wrage L, et al. Role of human milk in extremely low birth weight infants’ risk of necrotizing enterocolitis or death. J Perinatol. 2009;29:57–62.

    Article  PubMed  CAS  Google Scholar 

  43. Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:e177.

    Article  PubMed  Google Scholar 

  44. Favier CF, Vaughan EE, De Vos WM, et al. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol. 2002;68:219–26.

    Article  PubMed  CAS  Google Scholar 

  45. Martin CR, Walker WA. Intestinal immune defences and the inflammatory response in necrotizing entercolitis. Semin Fetal Neonatal Med. 2006;11:369–77.

    Article  PubMed  Google Scholar 

  46. Claud EC, Walker WA. Bacterial colonization, probiotics, and necrotizing enterocolitis. J Clin Gastroenterol. 2008;42(suppl):S46–52.

    Article  PubMed  Google Scholar 

  47. Alfaleh K, Anabrees J, Basseler D et al. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev 2011;(issue 3):CD005496.

    Google Scholar 

  48. Van Zwol A, Neu J, van Elburg RM. Long-term effects of neonatal glutamine-enriched nutrition in very-low-birth-weight infants. Nutr Rev. 2011;69:2–8.

    Article  PubMed  Google Scholar 

  49. Neu J, Li N. Pathophysiology of glutamine and glutamate metabolism in premature infants. Curr Opin Clin Nutr Metab Care. 2007;10:75–9.

    Article  PubMed  CAS  Google Scholar 

  50. Panigrahi P, Gewolb IH, Bamford P, et al. Role of glutamine in bacterial transcytosis and epithelia cell injury. J Parenter Enteral Nutr. 1997;21:75–80.

    Article  CAS  Google Scholar 

  51. Khan J, Lliboshi Y, Cui L, et al. Alanyl-glutamine-supplemented parenteral nutrition increases luminal mucus gel and decreases permeability in the rat small intestine. J Parenter Enteral Nutr. 1999;23:24–31.

    Article  CAS  Google Scholar 

  52. van der Hulst RR, van Kreel BK, von Meyenfeldt MR, et al. Glutamine and the preservation of gut integrity. Lancet. 1993;341:1363–5.

    Article  PubMed  Google Scholar 

  53. Tubman TR, Thompson SW, McGuire W. Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2008;(issue 1):CD001457.

    Google Scholar 

  54. Chokshi NK, Guner YS, Hunter CJ, Upperman JS, Grishin A, Ford HR. The role of nitric oxide in intestinal epithelial injury and restitution in neonatal NEC. Semin Perinatol. 2008;32:92–9.

    Article  PubMed  Google Scholar 

  55. Upperman JS, Potoka D, Grishin A, Hackam D, Zamora R, Ford HR. Mechanisms of nitric oxide-mediatred intestinal barrier failure in NEC. Semin Pediatr Surg. 2005;14:159–66.

    Article  PubMed  Google Scholar 

  56. Arslanoglu S, Ziegler EE, Moro GE, World Association of Perinatal Medicine Working Group on Nutrition. Donor human milk in preterm infant feeding: evidence and recommendations. J Perinat Med. 2010;38:347–51.

    PubMed  Google Scholar 

  57. Sullivan S, Schanler RJ, Kim JH, et al. An exclusively human milk-based diet is associated with a lower rate of NEC than a diet of human milk and bovine milk-based products. J Pediatr. 2010;156:562–7.

    Article  PubMed  CAS  Google Scholar 

  58. Bjornvad CR, Thymann T, Deutz NE, et al. Enteral feeding induces diet-dependent mucosal dysfunction, bacterial proliferation, and necrotizing enterocolitis in preterm pigs on parenteral nutrition. Am J Physiol Gastrointest Liver Physiol. 2008;295:G1092–103.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah N. Taylor M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taylor, S.N., Ross, J., Wagner, C.L. (2013). Intestinal Development and Permeability: Role in Nutrition of Preterm Infants. In: Watson, R., Grimble, G., Preedy, V., Zibadi, S. (eds) Nutrition in Infancy. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-224-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-224-7_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-223-0

  • Online ISBN: 978-1-62703-224-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics