Skip to main content

Protein Nutrition for the Preterm Infant

  • Chapter
  • First Online:
Nutrition in Infancy

Part of the book series: Nutrition and Health ((NH))

  • 2341 Accesses

Abstract

Protein nutrition is essential for the preterm infant’s growth and development. The preterm infant misses fetal accretion which provides a large amount of daily protein over the last trimester. Unlike the adult, the preterm infant is quickly vulnerable to calorie and protein deficits that can lead to catabolism. Essential amino acids are required in order to avoid autophagy and facilitate adequate signaling events, growth factors, and enzymatic reactions. Early amino acid delivery with a minimum 3 g/kg per day parenteral nutrition is paramount to diminish growth failure. Enteral milk should begin within the first few days to provide trophic factors and to reduce proteolysis. Human milk is preferred for its essential amino acid blend and bioactive ingredients. If human milk is unavailable or when boosting the density of milk, a commercial fortifier, free amino acid product, or a blend of hydrolyzed protein to mimic the essential amino acid profile may be preferred. Preterm formulas and then post discharge formulas are recommended when human milk is unavailable. Growth velocity using weight, length, and head circumference remain the standard for measuring nutritional adequacy. Measuring such blood urea nitrogen (BUN) (mg/dL) is helpful during supplementation of human milk to target protein needs. In the future, sophisticated tools such as air displacement technology to measure body composition may provide a more accurate insight as to goal standards to guide our dietary recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nair KS, Short KR. Hormonal and signaling role of branched-chain amino acids. J Nutr. 2005;135(6 Suppl):1547S–52.

    PubMed  CAS  Google Scholar 

  2. Fomon SJ. Protein intake of premature infants: interpretation of data. J Pediatr. 1977;90(3):504–6.

    Article  PubMed  CAS  Google Scholar 

  3. WHO. Protein and amino acid requirement in human nutrition. Geneva 2002.

    Google Scholar 

  4. Young VR, Yu YM, Fukagawa NK. Protein and energy interactions throughout life. Metabolic basis and nutritional implications. Acta Paediatr Scand Suppl. 1991;373:5–24.

    Article  PubMed  CAS  Google Scholar 

  5. Beaton GH, Chery A. Protein requirements of infants: a reexamination of concepts and approaches. Am J Clin Nutr. 1988;48(6):1403–12.

    PubMed  CAS  Google Scholar 

  6. Steffee WP, Goldsmith RS, Pencharz PB, Scrimshaw NS, Young VR. Dietary protein intake and dynamic aspects of whole body nitrogen metabolism in adult humans. Metabolism. 1976;25(3):281–97.

    Article  PubMed  CAS  Google Scholar 

  7. Ziegler EE, O’Donnell AM, Nelson SE, Fomon SJ. Body composition of the reference fetus. Growth. 1976;40(4):329–41.

    PubMed  CAS  Google Scholar 

  8. Neu J, Valentine C, Meetze W. Scientifically-based strategies for nutrition of the high-risk low birth weight infant. Eur J Pediatr. 1990;150(1):2–13.

    Article  PubMed  CAS  Google Scholar 

  9. Duffy B, Gunn T, Collinge J, Pencharz P. The effect of varying protein quality and energy intake on the nitrogen metabolism of parenterally fed very low birthweight (less than 1600 g) infants. Pediatr Res. 1981;15(7):1040–4.

    Article  PubMed  CAS  Google Scholar 

  10. Widdowson EM. Growth and composition of the fetus and newborn. In: Assali NS, editor. Biology of gestation, vol. 2. New York: Academic; 1968. p. 1–49.

    Google Scholar 

  11. Zlotkin SH, Bryan MH, Anderson GH. Intravenous nitrogen and energy intakes required to duplicate in utero nitrogen accretion in prematurely born human infants. J Pediatr. 1981;99(1):115–20.

    Article  PubMed  CAS  Google Scholar 

  12. Catzeflis C, Schutz Y, Micheli JL, Welsch C, Arnaud MJ, Jequier E. Whole body protein synthesis and energy expenditure in very low birth weight infants. Pediatr Res. 1985;19(7):679–87.

    Article  PubMed  CAS  Google Scholar 

  13. Academy A. Committee on nutrition. Hypoallergenic infant formulas. Pediatrics. 2000;106(2 Pt 1):346–9.

    Google Scholar 

  14. Pencharz PB, Masson M, Desgranges F, Papageorgiou A. Total-body protein turnover in human premature neonates: effects of birth weight, intra-uterine nutritional status and diet. Clin Sci (Lond). 1981;61(2):207–15.

    CAS  Google Scholar 

  15. Dupont C. Protein requirements during the first year of life. Am J Clin Nutr. 2003;77(6):1544S–9.

    PubMed  CAS  Google Scholar 

  16. Diekmann M, Genzel-Boroviczeny O, Zoppelli L, von Poblotzki M. Postnatal growth curves for extremely low birth weight infants with early enteral nutrition. Eur J Pediatr. 2005;164(12):714–23.

    Article  PubMed  Google Scholar 

  17. Wemhoner A, Ortner D, Tschirch E, Strasak A, Rudiger M. Nutrition of preterm infants in relation to bronchopulmonary dysplasia. BMC Pulm Med. 2011;11:7.

    Article  PubMed  Google Scholar 

  18. Oser BL. Method for integrating essential amino acid content in the nutritional evaluation of protein. J Am Diet Assoc. 1951;27(5):396–402.

    PubMed  CAS  Google Scholar 

  19. Smith CV, Hansen TN, Martin NE, McMicken HW, Elliott SJ. Oxidant stress responses in premature infants during exposure to hyperoxia. Pediatr Res. 1993;34(3):360–5.

    Article  PubMed  CAS  Google Scholar 

  20. Sturman JA, Gaull G, Raiha NC. Absence of cystathionase in human fetal liver: is cystine essential? Science. 1970;169(940):74–6.

    Article  PubMed  CAS  Google Scholar 

  21. Thomas B, Gruca LL, Bennett C, Parimi PS, Hanson RW, Kalhan SC. Metabolism of methionine in the newborn infant: response to the parenteral and enteral administration of nutrients. Pediatr Res. 2008;64(4):381–6.

    Article  PubMed  CAS  Google Scholar 

  22. Riedijk MA, van Beek RH, Voortman G, de Bie HM, Dassel AC, van Goudoever JB. Cysteine: a conditionally essential amino acid in low-birth-weight preterm infants? Am J Clin Nutr. 2007;86(4):1120–5.

    PubMed  CAS  Google Scholar 

  23. Heird WC. Biochemical homeostasis and body growth are reliable end points in clinical nutrition trials. Proc Nutr Soc. 2005;64(3):297–303.

    Article  PubMed  Google Scholar 

  24. Socha P, Grote V, Gruszfeld D, et al. Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr. 2011;94(6 Suppl):1776S–84.

    Article  PubMed  CAS  Google Scholar 

  25. van Vught AJ, Heitmann BL, Nieuwenhuizen AG, et al. Association between intake of dietary protein and 3-year-change in body growth among normal and overweight 6-year-old boys and girls (CoSCIS). Public Health Nutr. 2010;13(5):647–53.

    Article  PubMed  Google Scholar 

  26. Fenton TR. A new growth chart for preterm babies: Babson and Benda’s chart updated with recent data and a new format. BMC Pediatr. 2003;3:13.

    Article  PubMed  Google Scholar 

  27. Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117(4):1253–61.

    Article  PubMed  Google Scholar 

  28. Hellstrom A, Hard AL. Editorial on ‘Hyperglycemia, insulin and slower growth velocity may increase the risk of retinopathy of prematurity’ Kaempf JW et al. J Perinatol. 2011;31(4):228–9

    Google Scholar 

  29. Dabydeen L, Thomas JE, Aston TJ, Hartley H, Sinha SK, Eyre JA. High-energy and -protein diet increases brain and corticospinal tract growth in term and preterm infants after perinatal brain injury. Pediatrics. 2008;121(1):148–56.

    Article  PubMed  Google Scholar 

  30. Rivera Jr A, Bell EF, Bier DM. Effect of intravenous amino acids on protein metabolism of preterm infants during the first three days of life. Pediatr Res. 1993;33(2):106–11.

    Article  PubMed  Google Scholar 

  31. Thureen PJ, Melara D, Fennessey PV, Hay Jr WW. Effect of low versus high intravenous amino acid intake on very low birth weight infants in the early neonatal period. Pediatr Res. 2003;53(1):24–32.

    Article  PubMed  CAS  Google Scholar 

  32. Poindexter BB, Karn CA, Leitch CA, Liechty EA, Denne SC. Amino acids do not suppress proteolysis in premature neonates. Am J Physiol Endocrinol Metab. 2001;281(3):E472–8.

    PubMed  CAS  Google Scholar 

  33. van den Akker CH, te Braake FW, Schierbeek H, et al. Albumin synthesis in premature neonates is stimulated by parenterally administered amino acids during the first days of life. Am J Clin Nutr. 2007;86(4):1003–8.

    PubMed  Google Scholar 

  34. Valentine CJ, Fernandez S, Rogers LK, et al. Early amino-acid administration improves preterm infant weight. J Perinatol. 2009;29(6):428–32.

    Article  PubMed  CAS  Google Scholar 

  35. Radmacher PG, Looney SW, Rafail ST, Adamkin DH. Prediction of extrauterine growth retardation (EUGR) in VVLBW infants. J Perinatol. 2003;23(5):392–5.

    Article  PubMed  Google Scholar 

  36. Hay WW, Thureen P. Protein for preterm infants: how much is needed? How much is enough? How much is too much? Pediatr Neonatol. 2010;51(4):198–207.

    Article  PubMed  Google Scholar 

  37. Denne SC. Regulation of proteolysis and optimal protein accretion in extremely premature newborns. Am J Clin Nutr. 2007;85(2):621S–4.

    PubMed  CAS  Google Scholar 

  38. Poindexter BB, Karn CA, Denne SC. Exogenous insulin reduces proteolysis and protein synthesis in extremely low birth weight infants. J Pediatr. 1998;132(6):948–53.

    Article  PubMed  CAS  Google Scholar 

  39. Lonnerdal B. Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr. 2003;77(6):1537S–43.

    PubMed  Google Scholar 

  40. Carratù B, Boniglia C, Scalise F, Ambruzzi AM, Sanzini E. Nitrogenous components of human milk: non-protein nitrogen, true protein and free amino acids. Food Chem. 2003;81(3):357–62.

    Article  Google Scholar 

  41. Baldi A, Ioannis P, Chiara P, Eleonora F, Roubini C, Vittorio D. Biological effects of milk proteins and their peptides with emphasis on those related to the gastrointestinal ecosystem. J Dairy Res. 2005;72(Spec No(1S)):66–72.

    Article  PubMed  CAS  Google Scholar 

  42. Hamosh M. Bioactive factors in human milk. Pediatr Clin North Am. 2001;48(1):69–86.

    Article  PubMed  CAS  Google Scholar 

  43. Schanler RJ, Lau C, Hurst NM, Smith EO. Randomized trial of donor human milk versus preterm formula as substitutes for mothers’ own milk in the feeding of extremely premature infants. Pediatrics. 2005;116(2):400–6.

    Article  PubMed  Google Scholar 

  44. Schanler RJ, Shulman RJ, Lau C, Smith EO, Heitkemper MM. Feeding strategies for premature infants: randomized trial of gastrointestinal priming and tube-feeding method. Pediatrics. 1999;103(2):434–9.

    Article  PubMed  CAS  Google Scholar 

  45. Sullivan S, Schanler RJ, Kim JH, et al. An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr. 2010;156(4):562–7 e561.

    Google Scholar 

  46. Sisk PM, Lovelady CA, Dillard RG, Gruber KJ, O’Shea TM. Early human milk feeding is associated with a lower risk of necrotizing enterocolitis in very low birth weight infants. J Perinatol. 2007;27(7):428–33.

    Article  PubMed  CAS  Google Scholar 

  47. Porcelli PJ, Weaver Jr RG. The influence of early postnatal nutrition on retinopathy of prematurity in extremely low birth weight infants. Early Hum Dev. 2010;86(6):391–6.

    Article  PubMed  Google Scholar 

  48. Schanler RJ, Oh W. Composition of breast milk obtained from mothers of premature infants as compared to breast milk obtained from donors. J Pediatr. 1980;96(4):679–81.

    Article  PubMed  CAS  Google Scholar 

  49. Atkinson SA, Anderson GH, Bryan MH. Human milk: comparison of the nitrogen composition in milk from mothers of premature and full-term infants. Am J Clin Nutr. 1980;33(4):811–5.

    PubMed  CAS  Google Scholar 

  50. Saarela T, Kokkonen J, Koivisto M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. 2005;94(9):1176–81.

    Article  PubMed  Google Scholar 

  51. Faerk J, Skafte L, Petersen S, Peitersen B, Michaelsen KF. Macronutrients in milk from mothers delivering preterm. Adv Exp Med Biol. 2001;501:409–13.

    Article  PubMed  CAS  Google Scholar 

  52. Ghadimi H, Pecora P. Free amino acids of different kinds of milk. Am J Clin Nutr. 1963;13:75–81.

    PubMed  CAS  Google Scholar 

  53. Agostoni C, Carratu B, Boniglia C, Riva E, Sanzini E. Free amino acid content in standard infant formulas: comparison with human milk. J Am Coll Nutr. 2000;19(4):434–8.

    PubMed  CAS  Google Scholar 

  54. Jackson AA, Shaw JC, Barber A, Golden MH. Nitrogen metabolism in preterm infants fed human donor breast milk: the possible essentiality of glycine. Pediatr Res. 1981;15(11):1454–61.

    Article  PubMed  CAS  Google Scholar 

  55. Akinbi H, Meinzen-Derr J, Auer C, et al. Alterations in the host defense properties of human milk following prolonged storage or pasteurization. J Pediatr Gastroenterol Nutr. 2010;51(3):347–52.

    PubMed  CAS  Google Scholar 

  56. Welch AA, Shakya-Shrestha S, Lentjes MA, Wareham NJ, Khaw KT. Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish-eating meat-eaters, vegetarians, and vegans and the precursor-product ratio of alpha-linolenic acid to long-chain n-3 polyunsaturated fatty acids: results from the EPIC-Norfolk cohort. Am J Clin Nutr. 2010;92(5):1040–51.

    Article  PubMed  CAS  Google Scholar 

  57. Ford JE, Law BA, Marshall VM, Reiter B. Influence of the heat treatment of human milk on some of its protective constituents. J Pediatr. 1977;90(1):29–35.

    Article  PubMed  CAS  Google Scholar 

  58. Schanler RJ, Garza C, Nichols BL. Fortified mothers’ milk for very low birth weight infants: results of growth and nutrient balance studies. J Pediatr. 1985;107(3):437–45.

    Article  PubMed  CAS  Google Scholar 

  59. Schanler RJ, Abrams SA, Garza C. Bioavailability of calcium and phosphorus in human milk fortifiers and formula for very low birth weight infants. J Pediatr. 1988;113(1 Pt 1):95–100.

    PubMed  CAS  Google Scholar 

  60. de Onis M, Garza C, Onyango AW, Borghi E. Comparison of the WHO child growth standards and the CDC 2000 growth charts. J Nutr. 2007;137(1):144–8.

    PubMed  Google Scholar 

  61. Polberger SK, Axelsson IE, Raiha NC. Amino acid concentrations in plasma and urine in very low birth weight infants fed protein-unenriched or human milk protein-enriched human milk. Pediatrics. 1990;86(6):909–15.

    PubMed  CAS  Google Scholar 

  62. Mukhopadhyay K, Narnag A, Mahajan R. Effect of human milk fortification in appropriate for gestation and small for gestation preterm babies: a randomized controlled trial. Indian Pediatr. 2007;44(4):286–90.

    PubMed  Google Scholar 

  63. Reis BB, Hall RT, Schanler RJ, et al. Enhanced growth of preterm infants fed a new powdered human milk fortifier: a randomized, controlled trial. Pediatrics. 2000;106(3):581–8.

    Article  PubMed  CAS  Google Scholar 

  64. Chan GM. Effects of powdered human milk fortifiers on the antibacterial actions of human milk. J Perinatol. 2003;23(8):620–3.

    Article  PubMed  Google Scholar 

  65. Ovali F, Ciftci I, Cetinkaya Z, Bukulmez A. Effects of human milk fortifier on the antimicrobial properties of human milk. J Perinatol. 2006;26(12):761–3.

    Article  PubMed  CAS  Google Scholar 

  66. Berseth CL, Van Aerde JE, Gross S, Stolz SI, Harris CL, Hansen JW. Growth, efficacy, and safety of feeding an iron-fortified human milk fortifier. Pediatrics. 2004;114(6):e699–706.

    Article  PubMed  Google Scholar 

  67. Valentine CJ, Morrow G, Morrow AL. Promoting pasteurized donor human milk use in the Neonatal Intensive Care Unit (NICU) as an adjunct to care and to prevent necrotizing enterocolitis and shorten length of stay. In: Division of Dockets Management (HFA-305) FaDA, ed. Rockville, MD 20852. 10 Nov 2010.

    Google Scholar 

  68. Arslanoglu S, Moro GE, Ziegler EE. Adjustable fortification of human milk fed to preterm infants: does it make a difference? J Perinatol. 2006;26(10):614–21.

    Article  PubMed  CAS  Google Scholar 

  69. Kashyap S, Ohira-Kist K, Abildskov K, et al. Effects of quality of energy intake on growth and metabolic response of enterally fed low-birth-weight infants. Pediatr Res. 2001;50(3):390–7.

    Article  PubMed  CAS  Google Scholar 

  70. Premji S, Fenton T, Sauve R. Does amount of protein in formula matter for low-birthweight infants? A Cochrane systematic review. J Parenter Enteral Nutr. 2006;30(6):507–14.

    Article  CAS  Google Scholar 

  71. Cooke R, Embleton N, Rigo J, Carrie A, Haschke F, Ziegler E. High protein pre-term infant formula: effect on nutrient balance, metabolic status and growth. Pediatr Res. 2006;59(2):265–70.

    Article  PubMed  Google Scholar 

  72. de Betue CT, van Waardenburg DA, Deutz NE, et al. Increased protein-energy intake promotes anabolism in critically ill infants with viral bronchiolitis: a double-blind randomised controlled trial. Arch Dis Child. 2011;96(9):817–22.

    Article  PubMed  Google Scholar 

  73. Fairey AK, Butte NF, Mehta N, Thotathuchery M, Schanler RJ, Heird WC. Nutrient accretion in preterm infants fed formula with different protein: energy ratios. J Pediatr Gastroenterol Nutr. 1997;25(1):37–45.

    Article  PubMed  CAS  Google Scholar 

  74. Priolisi A, Didato M, Gioeli R, Fazzolari-Nesci A, Raiha NC. Milk protein quality in low birth weight infants: effects of protein-fortified human milk and formulas with three different whey-to-casein ratios on growth and plasma amino acid profiles. J Pediatr Gastroenterol Nutr. 1992;14(4):450–5.

    Article  PubMed  CAS  Google Scholar 

  75. Vanderhoof JA, Grandjean CJ, Burkley KT, Antonson DL. Effect of casein versus casein hydrolysate on mucosal adaptation following massive bowel resection in infant rats. J Pediatr Gastroenterol Nutr. 1984;3(2):262–7.

    Article  PubMed  CAS  Google Scholar 

  76. Poullain MG, Cezard JP, Marche C, et al. Effects of dietary whey proteins, their peptides or amino-acids on the ileal mucosa of normally fed and starved rats. Clin Nutr. 1991;10(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  77. Perez-Cano FJ, Marin-Gallen S, Castell M, et al. Bovine whey protein concentrate supplementation modulates maturation of immune system in suckling rats. Br J Nutr. 2007;98 Suppl 1:S80–4.

    PubMed  CAS  Google Scholar 

  78. Low PP, Rutherfurd KJ, Gill HS, Cross ML. Effect of dietary whey protein concentrate on primary and secondary antibody responses in immunized BALB/c mice. Int Immunopharmacol. 2003;3(3):393–401.

    Article  PubMed  CAS  Google Scholar 

  79. Berezin S, Schwarz SM, Glassman M, Davidian M, Newman LJ. Gastrointestinal milk intolerance of infancy. Am J Dis Child. 1989;143(3):361–2.

    PubMed  CAS  Google Scholar 

  80. Billeaud C, Guillet J, Sandler B. Gastric emptying in infants with or without gastro-oesophageal reflux according to the type of milk. Eur J Clin Nutr. 1990;44(8):577–83.

    PubMed  CAS  Google Scholar 

  81. Shenai JP, Dame MC, Churella HR, Reynolds JW, Babson SG. Nutritional balance studies in very-low-birth-weight infants: role of whey formula. J Pediatr Gastroenterol Nutr. 1986;5(3):428–33.

    Article  PubMed  CAS  Google Scholar 

  82. Thorkelsson T, Mimouni F, Namgung R, Fernandez-Ulloa M, Krug-Wispe S, Tsang RC. Similar gastric emptying rates for casein- and whey-predominant formulas in preterm infants. Pediatr Res. 1994;36(3):329–33.

    Article  PubMed  CAS  Google Scholar 

  83. Lee EJ, Heiner DC. Allergy to cow milk–1985. Pediatr Rev. 1986;7(7):195–203.

    Article  PubMed  CAS  Google Scholar 

  84. Rzehak P, Sausenthaler S, Koletzko S, et al. Short- and long-term effects of feeding hydrolyzed protein infant formulas on growth at < or = 6 y of age: results from the German Infant Nutritional Intervention Study. Am J Clin Nutr. 2009;89(6):1846–56.

    Article  PubMed  CAS  Google Scholar 

  85. Exl BM, Vandenplas Y, Blecker U. Role of hydrolyzed formulas in nutritional allergy prevention in infants. South Med J. 1997;90(12):1170–5.

    Article  PubMed  CAS  Google Scholar 

  86. von Berg A, Filipiak-Pittroff B, Kramer U, et al. Preventive effect of hydrolyzed infant formulas persists until age 6 years: long-term results from the German Infant Nutritional Intervention Study (GINI). J Allergy Clin Immunol. 2008;121(6):1442–7.

    Article  Google Scholar 

  87. Saylor JD, Bahna SL. Anaphylaxis to casein hydrolysate formula. J Pediatr. 1991;118(1):71–4.

    Article  PubMed  CAS  Google Scholar 

  88. Sampson HA, James JM, Bernhisel-Broadbent J. Safety of an amino acid-derived infant formula in children allergic to cow milk. Pediatrics. 1992;90(3):463–5.

    PubMed  CAS  Google Scholar 

  89. Andorsky DJ, Lund DP, Lillehei CW, et al. Nutritional and other postoperative management of neonates with short bowel syndrome correlates with clinical outcomes. J Pediatr. 2001;139(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  90. Carver JD, Wu PY, Hall RT, et al. Growth of preterm infants fed nutrient-enriched or term formula after hospital discharge. Pediatrics. 2001;107(4):683–9.

    Article  PubMed  CAS  Google Scholar 

  91. Hall RT, Callenbach JC, Sheehan MB, et al. Comparison of calcium- and phosphorus-supplemented soy isolate formula with whey-predominant premature formula in very low birth weight infants. J Pediatr Gastroenterol Nutr. 1984;3(4):571–6.

    Article  PubMed  CAS  Google Scholar 

  92. Pieltain C, De Curtis M, Gerard P, Rigo J. Weight gain composition in preterm infants with dual energy X-ray absorptiometry. Pediatr Res. 2001;49(1):120–4.

    Article  PubMed  CAS  Google Scholar 

  93. Ellis KJ, Yao M, Shypailo RJ, Urlando A, Wong WW, Heird WC. Body-composition assessment in infancy: air-displacement plethysmography compared with a reference 4-compartment model. Am J Clin Nutr. 2007;85(1):90–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina J. Valentine M.D., M.S-, R.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Valentine, C.J. (2013). Protein Nutrition for the Preterm Infant. In: Watson, R., Grimble, G., Preedy, V., Zibadi, S. (eds) Nutrition in Infancy. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-224-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-224-7_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-223-0

  • Online ISBN: 978-1-62703-224-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics