Skip to main content

Mesenchymal Stromal Cells and the Repair of Cartilage Tissue

  • Chapter
  • First Online:
Mesenchymal Stem Cell Therapy

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 2384 Accesses

Abstract

Articular cartilage has a limited intrinsic repair capacity, and thus defects are more likely to further degrade rather than undergo spontaneous self-repair. Whilst a number of surgical techniques have been developed to repair cartilage defects, their efficacy is generally poor and total joint replacement remains the gold standard, albeit last resort, treatment option. Cell-based therapies hold the greatest promise, as they appear uniquely capable of generating de novo cartilage tissue. Two approved therapies (ACI and MACI) are based on the premise that the transplantation of ex vivo expanded autologous chondrocyte populations, harvested from a non-load bearing region of the same joint, could be utilized to effectively regenerate cartilage tissue in the primary defect site. These therapeutic strategies are partially limited by our inability to harvest and expand adequate numbers of autologous chondrocytes that retain the appropriate phenotype. By contrast, the harvest and expansion of large numbers of mesenchymal stem/stromal cells (MSC) derived from tissues such as bone marrow and adipose is comparatively straightforward and has become routine in laboratories worldwide. Additionally, our understanding of the biochemical and biophysical signals required to drive the chondrogenic differentiation of MSC is rapidly increasing. It is conceivable that in the near future MSC expansion and differentiation technologies will offer a means to generate sufficient cell numbers, of an appropriate phenotype, for use in cartilage defect repair. In this chapter we review the relative potential of MSC and their likely contribution to cartilage regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valiyaveettil M, Mort JS, McDevitt CA (2005) The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint. Connect Tissue Res 46(2):83–91

    Article  PubMed  CAS  Google Scholar 

  2. Benjamin M, Ralphs JR (2004) Biology of fibrocartilage cells. Int Rev Cytol 233:1–45

    Article  PubMed  CAS  Google Scholar 

  3. Eyre DR, Wu JJ (1983) Collagen of fibrocartilage: a distinctive molecular phenotype in bovine meniscus. FEBS Lett 158(2):265–270

    Article  PubMed  CAS  Google Scholar 

  4. Kheira E, Shawa D (2009) Hyaline articular cartilage. Orthop Trauma 23(6):450–455

    Article  Google Scholar 

  5. Arden N, Nevitt MC (2006) Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol 20(1):3–25

    Article  PubMed  Google Scholar 

  6. Access Economics (2007) Painful realities: the economic impact of arthritis in Australia in 2007. Report for Arthritis Australia

    Google Scholar 

  7. March LM, Bagga H (2004) Epidemiology of osteoarthritis in Australia. Med J Aust 180:S6–S10

    PubMed  Google Scholar 

  8. Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10(3):150–154

    Article  PubMed  CAS  Google Scholar 

  9. Hubbard MJ (1996) Articular debridement versus washout for degeneration of the medial femoral condyle: a five-year study. J Bone Joint Surg: Br Vol 78(2):217–219

    CAS  Google Scholar 

  10. Smith GD, Knutsen G, Richardson JB (2005) A clinical review of cartilage repair techniques. J Bone Joint Surg: Br Vol 87(4):445–449

    Article  CAS  Google Scholar 

  11. Asik M et al (2008) The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results. Arthroscopy: J Arthrosc Relat Surg: Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc 24(11):1214–1220

    Google Scholar 

  12. Mithoefer K et al (2006) Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique: surgical technique. J Bone Joint Surg: Am Vol 88(Suppl 1 Pt 2):294–304

    Google Scholar 

  13. Steadman JR et al (2007) An arthroscopic treatment regimen for osteoarthritis of the knee. Arthroscopy: J Arthrosc Relat Surg: Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc 23(9):948–955

    Google Scholar 

  14. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress: a review of the current status and prospects. Osteoarthritis Cartil/OARS: Osteoarthritis Res Soc 10(6):432–463

    Article  CAS  Google Scholar 

  15. Mithoefer K et al (2006) High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 34(9):1413–1418

    Article  PubMed  Google Scholar 

  16. Mithoefer K et al (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee: a prospective cohort study. J Bone Joint Surg: Am Vol 87(9):1911–1920

    Article  Google Scholar 

  17. Bedi A, Feeley BT, Williams RJ III (2010) Management of articular cartilage defects of the knee. J Bone Joint Surg: Am Vol 92(4):994–1009

    Article  Google Scholar 

  18. Frisbie DD et al (1999) Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg (VS) 28(4):242–255

    Article  CAS  Google Scholar 

  19. Bae DK, Yoon KH, Song SJ (2006) Cartilage healing after microfracture in osteoarthritic knees. Arthroscopy: J Arthrosc Relat Surg: Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc 22(4):367–374

    Google Scholar 

  20. Hangody L, Fules P (2003) Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg: Am Vol 85-A(Suppl 2):25–32

    Google Scholar 

  21. Horas U et al (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint: a prospective, comparative trial. J Bone Joint Surg: Am Vol 85-A(2):185–192

    CAS  Google Scholar 

  22. Lane JG et al (2004) Follow-up of osteochondral plug transfers in a goat model: a 6-month study. Am J Sports Med 32(6):1440–1450

    Article  PubMed  Google Scholar 

  23. Huntley JS et al (2005) Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone Joint Surg: Am Vol 87(2):351–360

    Article  CAS  Google Scholar 

  24. Rose T et al (2005) The autologous osteochondral transplantation of the knee: clinical results, radiographic findings and histological aspects. Arch Orthop Trauma Surg 125(9):628–637

    Article  PubMed  Google Scholar 

  25. Peterson L et al (2003) Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg: Am Vol 85-A(Suppl 2):17–24

    Google Scholar 

  26. Brittberg M et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  PubMed  CAS  Google Scholar 

  27. Micheli LJ et al (2001) Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up. Clin J Sport Med: Off J Can Acad Sport Med 11(4):223–228

    Article  CAS  Google Scholar 

  28. Gillogly SD, Voight M, Blackburn T (1998) Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther 28(4):241–251

    PubMed  CAS  Google Scholar 

  29. Minas T (2001) Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop Relat Res 391(Suppl):S349–S361

    Article  PubMed  Google Scholar 

  30. Wood JJ et al (2006) Autologous cultured chondrocytes: adverse events reported to the United States Food and Drug Administration. J Bone Joint Surg: Am Vol 88(3):503–507

    Article  Google Scholar 

  31. Saris DB et al (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36(2):235–246

    Article  PubMed  Google Scholar 

  32. Knutsen G et al (2004) Autologous chondrocyte implantation compared with microfracture in the knee: a randomized trial. J Bone Joint Surg: Am Vol 86-A(3):455–464

    Google Scholar 

  33. Knutsen G et al (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture: findings at five years. J Bone Joint Surg: Am Vol 89(10):2105–2112

    Article  Google Scholar 

  34. Noyes FR, Barber SD, Mooar LA (1989) A rationale for assessing sports activity levels and limitations in knee disorders. Clin Orthop Relat Res 246:238–249

    PubMed  Google Scholar 

  35. Behrens P et al (2006) Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)–5-year follow-up. Knee 13(3):194–202

    Article  PubMed  Google Scholar 

  36. Peterson L et al (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 374:212–234

    Article  PubMed  Google Scholar 

  37. Kreuz PC et al (2007) Classification of graft hypertrophy after autologous chondrocyte implantation of full-thickness chondral defects in the knee. Osteoarthritis Cartil/OARS: Osteoarthritis Res Soc 15(12):1339–1347

    Article  CAS  Google Scholar 

  38. Cournil-Henrionnet C et al (2008) Phenotypic analysis of cell surface markers and gene expression of human mesenchymal stem cells and chondrocytes during monolayer expansion. Biorheology 45(3–4):513–526

    PubMed  Google Scholar 

  39. Dell’Accio F, De Bari C, Luyten FP (2001) Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis Rheum 44(7):1608–1619

    Article  PubMed  Google Scholar 

  40. Stewart MC et al (2000) Phenotypic stability of articular chondrocytes in vitro: the effects of culture models, bone morphogenetic protein 2, and serum supplementation. J Bone Miner Res: Off J Am Soc Bone Miner Res 15(1):166–174

    Article  CAS  Google Scholar 

  41. Jones E et al (2010) Large-scale extraction and characterization of CD271+ multipotential stromal cells from trabecular bone in health and osteoarthritis: implications for bone regeneration strategies based on uncultured or minimally cultured multipotential stromal cells. Arthritis Rheum 62(7):1944–1954

    PubMed  CAS  Google Scholar 

  42. Mareddy S et al (2007) Clonal isolation and characterization of bone marrow stromal cells from patients with osteoarthritis. Tissue Eng 13(4):819–829

    Article  PubMed  CAS  Google Scholar 

  43. Murphy JM et al (2002) Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 46(3):704–713

    Article  PubMed  Google Scholar 

  44. Porada CD, Zanjani ED, Almeida-Porad G (2006) Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther 1(3):365–369

    Article  PubMed  CAS  Google Scholar 

  45. Volarevic V et al (2011) Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 29(1):5–10

    Article  PubMed  CAS  Google Scholar 

  46. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  PubMed  CAS  Google Scholar 

  47. Winter A et al (2003) Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 48(2):418–429

    Article  PubMed  CAS  Google Scholar 

  48. Liu TM et al (2007) Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25(3):750–760

    Article  PubMed  Google Scholar 

  49. Huang JI et al (2005) Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res: Off Publ Orthop Res Soc 23(6):1383–1389

    CAS  Google Scholar 

  50. Sakaguchi Y et al (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52(8):2521–2529

    Article  PubMed  Google Scholar 

  51. Musina RA et al (2006) Differentiation potential of mesenchymal stem cells of different ­origin. Bull Exp Biol Med 141(1):147–151

    Article  PubMed  CAS  Google Scholar 

  52. Augello A, Kurth TB, De Bari C (2010) Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur Cell Mater 20:121–133

    PubMed  CAS  Google Scholar 

  53. Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97(1):33–44

    Article  PubMed  CAS  Google Scholar 

  54. Sandell LJ, Nalin AM, Reife RA (1994) Alternative splice form of type II procollagen mRNA (IIA) is predominant in skeletal precursors and non-cartilaginous tissues during early mouse development. Dev Dyn: Off Publ Am Assoc Anatom 199(2):129–140

    CAS  Google Scholar 

  55. Ng LJ et al (1997) SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 183(1):108–121

    Article  PubMed  CAS  Google Scholar 

  56. Tickle C (2002) Molecular basis of vertebrate limb patterning. Am J Med Genet 112(3):250–255

    Article  PubMed  Google Scholar 

  57. Urist MR (1965) Bone: formation by autoinduction. Science 150(698):893–899

    Article  PubMed  CAS  Google Scholar 

  58. Yoon BS, Lyons KM (2004) Multiple functions of BMPs in chondrogenesis. J Cell Biochem 93(1):93–103

    Article  PubMed  CAS  Google Scholar 

  59. Minina E et al (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3(3):439–449

    Article  PubMed  CAS  Google Scholar 

  60. Johnstone B et al (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1):265–272

    Article  PubMed  CAS  Google Scholar 

  61. Barry F et al (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268(2):189–200

    Article  PubMed  CAS  Google Scholar 

  62. Raghunath J et al (2005) Advancing cartilage tissue engineering: the application of stem cell technology. Curr Opin Biotechnol 16(5):503–509

    Article  PubMed  CAS  Google Scholar 

  63. Bosnakovski D et al (2006) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93(6):1152–1163

    Article  PubMed  CAS  Google Scholar 

  64. Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60(2):243–262

    Article  PubMed  CAS  Google Scholar 

  65. De Bari C, Dell’Accio F, Luyten FP (2004) Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 50(1):142–150

    Article  PubMed  Google Scholar 

  66. Pelttari K et al (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54(10):3254–3266

    Article  PubMed  CAS  Google Scholar 

  67. Dell’Accio F, De Bari C, Luyten FP (2003) Microenvironment and phenotypic stability ­specify tissue formation by human articular cartilage-derived cells in vivo. Exp Cell Res 287(1):16–27

    Article  PubMed  Google Scholar 

  68. Fischer J et al (2010) Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum 62(9):2696–2706

    Article  PubMed  CAS  Google Scholar 

  69. Weiss S et al (2010) Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol 223(1):84–93

    PubMed  CAS  Google Scholar 

  70. Hui TY et al (2008) In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration. Biomaterials 29(22):3201–3212

    Article  PubMed  CAS  Google Scholar 

  71. Mueller MB, Tuan RS (2008) Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum 58(5):1377–1388

    Article  PubMed  CAS  Google Scholar 

  72. Mackay AM et al (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4(4):415–428

    Article  PubMed  CAS  Google Scholar 

  73. Lafont JE, Talma S, Murphy CL (2007) Hypoxia-inducible factor 2alpha is essential for hypoxic induction of the human articular chondrocyte phenotype. Arthritis Rheum 56(10):3297–3306

    Article  PubMed  CAS  Google Scholar 

  74. Markway BD et al (2010) Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplant 19(1):29–42

    Article  PubMed  Google Scholar 

  75. Anderson CE et al (1964) The composition of the organic component of human articular ­cartilage: relationship to age and degenerative joint disease. J Bone Joint Surg: Am Vol 46:1176–1183

    CAS  Google Scholar 

  76. Kheir E, Shaw D (2009) Hyaline articular cartilage. Orthop Trauma 23(6):450–455

    Article  Google Scholar 

  77. Doran MR et al (2010) Membrane bioreactors enhance microenvironmental conditioning and tissue development. Tissue Eng C: Methods 16(3):407–415

    Article  CAS  Google Scholar 

  78. Chang F et al (2008) Repair of large full-thickness articular cartilage defects by transplantation of autologous uncultured bone-marrow-derived mononuclear cells. J Orthop Res: Off Publ Orthop Res Soc 26(1):18–26

    Google Scholar 

  79. Yan H, Yu C (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy: J Arthrosc Relat Surg: Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc 23(2):178–187

    Google Scholar 

  80. Swieszkowski W et al (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24(5):489–495

    Article  PubMed  CAS  Google Scholar 

  81. Mrugala D et al (2008) Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Ann Rheum Dis 67(3):288–295

    Article  PubMed  CAS  Google Scholar 

  82. Chang CH et al (2011) Tissue engineering-based cartilage repair with mesenchymal stem cells in a porcine model. J Orthop Res: 29(12):1874–1880

    Google Scholar 

  83. Augello A et al (2007) Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum 56(4):1175–1186

    Article  PubMed  CAS  Google Scholar 

  84. Wakitani S et al (2004) Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 13(5):595–600

    Article  PubMed  Google Scholar 

  85. Wakitani S et al (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 1(1):74–79

    Article  PubMed  Google Scholar 

  86. Kuroda R et al (2007) Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartil/OARS: Osteoarthritis Res Soc 15(2):226–231

    Article  CAS  Google Scholar 

  87. Wakitani S et al (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartil/OARS: Osteoarthritis Res Soc 10(3):199–206

    Article  CAS  Google Scholar 

  88. Nejadnik H et al (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38(6):1110–1116

    Article  PubMed  Google Scholar 

  89. Kasemkijwattana C et al (2011) Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report. J Med Assoc Thailand  =  Chotmaihet thangphaet 94(3):395–400

    Google Scholar 

  90. Cook et al (2012) Micromarrows – 3D co-culture of haematopoietic stem cells and mesenchymal stromal cells. Tissue Eng 18(5):319–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Doran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doran, M.R., Young, M. (2013). Mesenchymal Stromal Cells and the Repair of Cartilage Tissue. In: Chase, L., Vemuri, M. (eds) Mesenchymal Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-200-1_8

Download citation

Publish with us

Policies and ethics