Skip to main content

Spinal Cord Injury: The Rabbit Model

  • Protocol
  • First Online:
Animal Models of Spinal Cord Repair

Part of the book series: Neuromethods ((NM,volume 76))

Abstract

This chapter gives reasons for the choice of rabbit in experimental neurobiology and includes descriptions of both the spinal cord injury models and behavioral neuroscience methods. The models provide mechanisms for hypothesis generation that can be investigated at molecular and cellular levels. New insights obtained at both levels will result in a better understanding of various changes in nervous tissue after spinal cord injuries and ultimately will improve prevention and treatment modalities. The functional justification of the techniques presented in this chapter will allow the readers to design their own experiments in the rabbit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hrapkiewicz K, Medina L (2007) Rabbits. In: Clinical laboratory animal medicine: an introduction, 3rd edn. Wiley-Blackwell, John Wiley & Sons, Inc., Hoboken, NJ

    Google Scholar 

  2. Donnelly H (1995) Quality in laboratory animals. In: Tuffery AA (ed) Laboratory animals—An introduction for experimenters, 2nd edn. Wiley, Chichester, pp 181–203

    Google Scholar 

  3. Malley D (2000) Handling, restraint and clinical techniques. In: Flecknell P (ed) Manual of rabbit medicine and surgery. British Small Animal Veterinary Association, UK, pp 3–9

    Google Scholar 

  4. Moore WM Jr, Hollier LH (1991) The influence of severity of spinal cord ischemia in the etiology of delayed-onset paraplegia. Ann Surg 213:427–431

    Article  PubMed  Google Scholar 

  5. Boydell P (2000) Nervous system and disorders. In: Flecknell P (ed) Manual of rabbit medicine and surgery. BSAVA, Gloucester, pp 57–61

    Google Scholar 

  6. Orendacova J, Cízková D, Kafka J, Lukácová N, Marsala M, Sulla I et al (2001) Cauda equina syndrome. Prog Neurobiol 64:613–637

    Article  PubMed  CAS  Google Scholar 

  7. Greenaway JB, Partlow GD, Gonsholt NL, Fisher KR (2001) Anatomy of the lumbosacral spinal cord in rabbits. J Am Anim Hosp Assoc 37:27–34

    PubMed  CAS  Google Scholar 

  8. Zivin JA, DeGirolami U (1980) Spinal cord infarction: a highly reproducible stroke model. Stroke 11:200–202

    Article  PubMed  CAS  Google Scholar 

  9. DeGirolami U, Zivin JA (1982) Neuropathology of experimental spinal cord ischemia in the rabbit. J Neuropathol Exp Neurol 41:129–149

    Article  PubMed  CAS  Google Scholar 

  10. Maršala M (1998) Spinal cord blood flow and metabolism in transient spinal ischemia. In: Stålberg E, Sharma HS, Olsson Y (eds) Spinal cord monitoring. Springer, Wien, New York, pp 5–25

    Google Scholar 

  11. Cheng MK, Robertson C, Grossman RG, Foltz R, Williams V (1984) Neurological outcome correlated with spinal evoked potentials in a spinal cord ischemia model. J Neurosurg 60:786–795

    Article  PubMed  CAS  Google Scholar 

  12. Vacanti FX, Ames A 3rd (1984) Mild hypothermia and Mg++ protect against irreversible damage during CNS ischemia. Stroke 15:695–698

    Article  PubMed  CAS  Google Scholar 

  13. Marsala M, Vanický I, Radoňák J, Kliesenbauerova E, Maršala J (1992) Postischemic hyperoxia enhances vulnerability in the rabbit spinal cord ischemia model. Restor Neurol Neurosci 6:283–291

    Google Scholar 

  14. Jacobs TP, Kempski O, McKinley D, Dutka AJ, Hallenbeck JM, Feuerstein G (1992) Blood flow and vascular permeability during motor dysfunction in a rabbit model of spinal cord ischemia. Stroke 23:367–373

    Article  PubMed  CAS  Google Scholar 

  15. Schreiberová A, Kisucká A, Hricová L, Kucharíková A, Pavel J, Lukáčová N (2012) The vulnerability of nitrergic neurons to transient spinal cord ischemia: a quantitative immunohistochemical and histochemical study. J Mol Histol 43(2):203–213.

    Article  PubMed  Google Scholar 

  16. Schreiberová A, Lacková M, Kolesár D, Lukácová N, Marsala J (2006) Neuronal nitric oxide synthase immunopositivity in motoneurons of the rabbit’s spinal cord after transient ischemia/reperfusion injury. Cell Mol Neurobiol 26:1483–1494

    Article  PubMed  Google Scholar 

  17. Lukácová N, Jalc P, Marsala J (1998) Phospholipid composition in spinal cord regions after ischemia/reperfusion. Neurochem Res 23:1069–1077

    Article  PubMed  Google Scholar 

  18. Lukácová N, Halát G, Chavko M, Marsala J (1996) Ischemia-reperfusion injury in the spinal cord of rabbits strongly enhances lipid peroxidation and modifies phospholipid profiles. Neurochem Res 21:869–873

    Article  PubMed  Google Scholar 

  19. Marsala M, Danielisová V, Chavko M, Hornáková A, Marsala J (1989) Improvement of energy state and basic modifications of neuropathological damage in rabbits as a result of graded postischemic spinal cord reoxygenation. Exp Neurol 105:93–103

    Article  PubMed  CAS  Google Scholar 

  20. Martiniak J, Saganová K, Chavko M (1991) Free and peptide-bound amino acids as indicators of ischemic damage of the rabbit spinal cord. J Neuropathol Exp Neurol 50:73–81

    Article  PubMed  CAS  Google Scholar 

  21. Marsala J, Kluchova D, Marsala M (1997) Spinal cord gray matter layers rich in NADPH diaphorase-positive neurons are refractory to ischemia-reperfusion-induced injury: a histochemical and silver impregnation study in rabbit. Exp Neurol 145:165–179

    Article  PubMed  CAS  Google Scholar 

  22. Deshpande SB, Jha A (2004) Aglycemia and ischemia depress monosynaptic and polysynaptic reflexes in neonatal rat spinal cord in vitro by involving different types of 5-hydroxytryptamine receptors. Neurosci Lett 372:167–172

    Article  PubMed  CAS  Google Scholar 

  23. Kolesárová M, Pavel J, Lukáčová N, Kolesár D, Maršala J (2006) Effect of ischemia in vivo and oxygen-glucose deprivation in vitro on NOS pools in the spinal cord: comparative study. Cell Mol Neurobiol 26:1281–1294

    Article  PubMed  Google Scholar 

  24. Croning MDR, Haddad GG (1998) Comparison of brain slice chamber designs for investigations of oxygen deprivation in vitro. J Neurosci Methods 81:103–111

    Article  PubMed  CAS  Google Scholar 

  25. Dobrota D, Matejovicova M, Kurella EG, Boldyrev AA (1999) Na/K-ATPase under oxidative stress: molecular mechanisms of injury. Cell Mol Neurobiol 19:141–149

    Article  PubMed  CAS  Google Scholar 

  26. Lehotsky J, Kaplan P, Matejovicova M, Murin R, Racay P, Raeymaekers L (2002) Ion transport systems as targets of free radicals during ischemia reperfusion injury. Gen Physiol Biophys 21:31–37

    PubMed  CAS  Google Scholar 

  27. Dawson TM, Dawson VL, Snyder SH (1992) A novel neuronal Messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 32:297–311

    Article  PubMed  CAS  Google Scholar 

  28. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. J Biochem 298:249–258

    CAS  Google Scholar 

  29. Garthwaite G, Brown G, Batchelor AM, Goodwin DA, Garthwaite J (1999) Mechanisms of ischemic damage to central white matter axons: a quantitative histological analysis using rat optic nerve. Neuroscience 94:1219–1230

    Article  PubMed  CAS  Google Scholar 

  30. de Haan P, Kalkman CJ, Vanicky I, Jacobs MJ, Drummond JC (1998) Effect of mildhypothermia and the 21-aminosteroid U-74389 G on neurologic and histopathologic outcome after transient spinal cord ischemia in the rabbit. J Neurosurg Anesthesiol 10:86–93

    Article  PubMed  Google Scholar 

  31. Edgerton VR, Roy RR (2002) Paralysis recovery in humans and model systems. Curr Opin Neurobiol 12:658–667

    Article  PubMed  CAS  Google Scholar 

  32. Christensen MD, Everhart AW, Pickelman JT, Hulsebosch CE (1996) Mechanical and thermal allodynia in chronic central pain following spinal cord injury. Pain 68:97–107

    Article  PubMed  CAS  Google Scholar 

  33. Lee JH, Price RH, Williams FG, Mayer B, Beitz AJ (1993) Nitric oxide synthase is found in some spinothalamic neurons and in neuronal processes that appose spinal neurons that express Fos induced by noxious stimulation. Brain Res 608:324–333

    Article  PubMed  CAS  Google Scholar 

  34. Armand J (1984) The pyramidal tract. Recent anatomic and physiologic findings. Rev Neurol (Paris) 140(5):309–329

    CAS  Google Scholar 

  35. Hobbelen JF, Gramsbergen A, van Hof MW (1992) Descending pathways and the hopping response in the rabbit. Behav Brain Res 15:217–221

    Article  Google Scholar 

  36. Marsala J, Marsala M, Lukacova N, Ishikawa T, Cizkova D (2003) Localization and distribution patterns of nicotinamide adenine dinucleotide phosphate diaphorase exhibiting axons in the white matter of the spinal cord of the rabbit. Cell Mol Neurobiol 23:57–92

    Article  PubMed  CAS  Google Scholar 

  37. Zivin JA, DeGirolami U, Hurwitz EL (1982) Spectrum of neurological deficits in experimental CNS ischemia. A quantitative study. Arch Neurol 39:408–412

    Article  PubMed  CAS  Google Scholar 

  38. Tarlov IM (1957) Spinal cord compression: mechanism of paralysis and treatment. Charles C Thomas, Springfield, IL, p 147

    Google Scholar 

  39. Drummond JC, Moore SS (1989) The influence of dextrose administration on neurologic outcome after temporary spinal cord ischemia in the rabbit. Anesthesiology 70:64–70

    Article  PubMed  CAS  Google Scholar 

  40. Johnson SH, Kraime JM, Graeber GM (1993) Effects of flunarizine on neurological recovery and spinal cord blood flow in experimental spinal cord ischemia in rabbits. Stroke 24:1547–1553

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadežda Lukáčová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lukáčová, N., Pavel, J., Gálik, J. (2013). Spinal Cord Injury: The Rabbit Model. In: Aldskogius, H. (eds) Animal Models of Spinal Cord Repair. Neuromethods, vol 76. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-197-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-197-4_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-196-7

  • Online ISBN: 978-1-62703-197-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics