Skip to main content

Dorsal Root Injury for the Study of Spinal Cord Injury Repair

  • Protocol
  • First Online:
Animal Models of Spinal Cord Repair

Part of the book series: Neuromethods ((NM,volume 76))

Abstract

Dorsal root injury provides opportunities for highly reproducible lesions and for detailed anatomical, physiological, and behavioral outcome assessment with high precision and validity. Dorsal root injury models are used to several aspects of relevance to spinal cord injury repair: (1) mechanisms of regeneration failure in the central nervous system and how to overcome it; (2) axon degeneration, as well as myelin degradation and elimination in the central nervous system—their roles and possible manipulations in spinal cord repair; (3) consequences in the spinal cord of mimicking human plexus injuries by dorsal root avulsion, including its effect on neuron survival, inflammatory processes, and vascular dysfunction; and (4) therapeutic strategies which may be translated to the treatment of clinical plexus avulsion injuries. This chapter describes various dorsal root injury models, their relationship to basic and translational aspects of spinal cord injury repair, as well as basic experimental procedures associated with these models in rat and mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Havton LA, Carlstedt T (2009) Repair and rehabilitation of plexus and root avulsions in animal models and patients. Curr Opin Neurol 22(6):570–574

    PubMed  Google Scholar 

  2. Richardson PM, Verge VM (1987) Axonal regeneration in dorsal spinal roots is accelerated by peripheral axonal transection. Brain Res 411(2):406–408

    CAS  PubMed  Google Scholar 

  3. Masuda T, Shiga T (2005) Chemorepulsion and cell adhesion molecules in patterning initial trajectories of sensory axons. Neurosci Res 51(4):337–347

    CAS  PubMed  Google Scholar 

  4. Niederländer C, Lumsden A (1996) Late emigrating neural crest cells migrate specifically to the exit points of cranial branchiomotor nerves. Development 122(8):2367–2374

    PubMed  Google Scholar 

  5. Golding JP, Cohen J (1997) Border controls at the mammalian spinal cord: late-surviving neural crest boundary cap cells at dorsal root entry sites may regulate sensory afferent ingrowth and entry zone morphogenesis. Mol Cell Neurosci 9(5–6):381–396

    CAS  PubMed  Google Scholar 

  6. Golding J, Shewan D, Cohen J (1997) Maturation of the mammalian dorsal root entry zone—from entry to no entry. Trends Neurosci 20(7):303–308

    CAS  PubMed  Google Scholar 

  7. Mauti O, Domanitskaya E, Andermatt I, Sadhu R, Stoeckli ET (2007) Semaphorin6A acts as a gate keeper between the central and the peripheral nervous system. Neural Dev 2:28

    PubMed  Google Scholar 

  8. Coulpier F, Decker L, Funalot B, Vallat JM, Garcia-Bragado F, Charnay P, Topilko P (2010) CNS/PNS boundary transgression by central glia in the absence of Schwann cells or Krox20/Egr2 function. J Neurosci 30(17):5958–5967

    CAS  PubMed  Google Scholar 

  9. Fraher JP, The SMM (1987) CNS-PNS transitional zone of rat cervical dorsal roots during development and at maturity. A morphological and morphometric study. J Anat 152:189–203

    CAS  PubMed  Google Scholar 

  10. Fraher JP (1992) The CNS-PNS, transitional zone of the rat. Morphometric studies at cranial and spinal levels. Prog Neurobiol 38(3):261–316

    CAS  PubMed  Google Scholar 

  11. Fraher J (2002) Axons and glial interfaces: ultrastructural studies. J Anat 200(4):415–430

    PubMed  Google Scholar 

  12. Berthold CH, Carlstedt T (1977) Observations on the morphology at the transition between the peripheral and the central nervous system in the cat. V. A light microscopical and histochemical study of S1 dorsal rootlets in developing kittens. Acta Physiol Scand Suppl 446:73–85

    CAS  PubMed  Google Scholar 

  13. Carlstedt T, Dalsgaard CJ, Molander C (1987) Regrowth of lesioned dorsal root nerve fibers into the spinal cord of neonatal rats. Neurosci Lett 74(1):14–18

    CAS  PubMed  Google Scholar 

  14. Carlstedt T (1988) Reinnervation of the mammalian spinal cord after neonatal dorsal root crush. J Neurocytol 17(3):335–350

    CAS  PubMed  Google Scholar 

  15. Aldskogius H, Kozlova EN (2002) Strategies for repair of the deafferented spinal cord. Brain Res Brain Res Rev 40(1–3):301–308

    PubMed  Google Scholar 

  16. Berthold CH, Carlstedt T (1977) Observations on the morphology at the transition between the peripheral and the central nervous system in the cat. II. General organization of the transitional region in S1 dorsal rootlets. Acta Physiol Scand Suppl 446:23–42

    CAS  PubMed  Google Scholar 

  17. Berthold CH, Carlstedt T (1977) Observations on the morphology at the transition between the peripheral and the central nervous system in the cat. III. Myelinated fibres in S1 dorsal rootlets. Acta Physiol Scand Suppl 446:43–60

    CAS  PubMed  Google Scholar 

  18. Hildebrand C, Remahl S, Persson H, Bjartmar C (1993) Myelinated nerve fibres in the CNS. Prog Neurobiol 40(3):319–384

    CAS  PubMed  Google Scholar 

  19. Carlstedt T (1977) Observations on the morphology at the transition between the peripheral and the central nervous system in the cat. IV. Unmyelinated fibres in S1 dorsal rootlets. Acta Physiol Scand Suppl 446:61–72

    CAS  PubMed  Google Scholar 

  20. Smith GM, Falone AE, Frank E (2012) Sensory axon regeneration: rebuilding functional connections in the spinal cord. Trends Neurosci 35(3):156–163

    CAS  PubMed  Google Scholar 

  21. Saijilafu, Hur EM, Zhou FQ (2011) Genetic dissection of axon regeneration via in vivo electroporation of adult mouse sensory neurons. Nat Commun 2:543.

    Google Scholar 

  22. Kozlova EN, Seiger Å, Aldskogius H (1997) Human dorsal root ganglion neurons from embryonic donors extend axons into the host rat spinal cord along laminin peripheral surroundings of the dorsal root transitional zone. J Neurocytol 26(12):811–822

    CAS  PubMed  Google Scholar 

  23. Levinsson A, Holmberg H, Schouenborg J, Seiger Å, Aldskogius H, Kozlova EN (2000) Functional connections are established in the deafferented rat spinal cord by peripherally transplanted human embryonic sensory neurons. Eur J Neurosci 12(10):3589–3595

    CAS  PubMed  Google Scholar 

  24. Åkesson E, Sandelin M, Kanaykina N, Aldskogius H, Kozlova EN (2008) Long-term survival, robust neuronal differentiation, and extensive migration of human forebrain stem/progenitor cells transplanted to the adult rat dorsal root ganglion cavity. Cell Transplant 17(10–11):1111123

    Google Scholar 

  25. Aldskogius H, Berens C, Kanaykina N, Liakhovitskaia A, Medvinsky A, Sandelin M, Schreiner S, Wegner M, Hjerling-Leffler J, Kozlova EN (2009) Regulation of boundary cap neural crest stem cell differentiation after transplantation. Stem Cells 27(7):1592–1603

    CAS  PubMed  Google Scholar 

  26. König N, Åkesson E, Telorack M, Vasylovska S, Ngamjariyawat A, Sundström E, Oster A, Trolle C, Berens C, Aldskogius H, Seiger Å, Kozlova EN (2011) Forced Runx1 expression in human neural stem/progenitor cells transplanted to the rat dorsal root ganglion cavity results in extensive axonal growth specifically from spinal cord-derived neurospheres. Stem Cells Dev 20(11):1847–1857

    PubMed  Google Scholar 

  27. Ramon y Cajal S (1991) Degeneration and regeneration of the nervous system. In: DeFelipe J, Jones EG (eds) Translated by R. M. May. Oxford University Press

    Google Scholar 

  28. Spiegel DA, Seaber AV, Chen LE, Urbaniak JR (1993) Recovery following stretch injury to the sciatic nerve of the rat: an in vivo study. J Reconstr Microsurg 9(1):69–74

    CAS  PubMed  Google Scholar 

  29. Ibrahim AG, Raisman G, Li Y (2009) Permanent loss of fore-paw grasping requires complete deprivation of afferent input from a minimum of four dorsal roots of the rat brachial plexus. Exp Neurol 215(1):142–145

    PubMed  Google Scholar 

  30. Ibrahim AG, Kirkwood PA, Raisman G, Li Y (2009) Restoration of hand function in a rat model of repair of brachial plexus injury. Brain 132(Pt 5):1268–1276

    PubMed  Google Scholar 

  31. Spinner RJ, Khoobehi A, Kazmi S, Krumreich JA, Zhao S, Zhang Z et al (2000) Model for avulsion injury in the rat brachial plexus using passive acceleration. Microsurgery 20(2):94–97

    CAS  PubMed  Google Scholar 

  32. Cao XC, Ling LJ (2003) Anatomic basis and technical aspects of a new brachial plexus avulsion injury model in the rat. Plast Reconstr Surg 111(7):2488–2490

    PubMed  Google Scholar 

  33. Rodrigues-Filho R, Santos AR, Bertelli JA, Calixto JB (2003) Avulsion injury of the rat brachial plexus triggers hyperalgesia and allodynia in the hindpaws: a new model for the study of neuropathic pain. Brain Res 982(2):186–194

    CAS  PubMed  Google Scholar 

  34. Quintão NL, Balz D, Santos AR, Campos MM, Calixto JB (2006) Long-lasting neuropathic pain induced by brachial plexus injury in mice: role triggered by the pro-inflammatory cytokine, tumour necrosis factor alpha. Neuropharmacology 50(5):614–620

    PubMed  Google Scholar 

  35. Paszcuk AF, Dutra RC, da Silva KA, Quintão NL, Campos MM, Calixto JB (2011) Cannabinoid agonists inhibit neuropathic pain induced by brachial plexus avulsion in mice by affecting glial cells and MAP kinases. PLoS One 6(9):e24034

    CAS  PubMed  Google Scholar 

  36. Wieseler J, Ellis AL, McFadden A, Brown K, Starnes C, Maier SF, Watkins LR, Falci S (2010) Below level central pain induced by discrete dorsal spinal cord injury. J Neurotrauma 27:1697–1707

    PubMed  Google Scholar 

  37. Chew DJ, Carlstedt T, Shortland PJ (2011) A comparative histological analysis of two models of nerve root avulsion injury in the adult rat. Neuropathol Appl Neurobiol 37(6):613–632

    CAS  PubMed  Google Scholar 

  38. Wieseler J, Ellis A, Maier SF, Watkins LR, Falci S (2012) Unilateral T13 and L1 dorsal root avulsion: methods for a novel model of central neuropathic pain. Methods Mol Biol 851:171–183

    PubMed  Google Scholar 

  39. Lawson SN (1995) Neuropeptides in morphologically and functionally identified primary afferent neurons in dorsal root ganglia: substance P, CGRP and somatostatin. Prog Brain Res 104:161–173

    CAS  PubMed  Google Scholar 

  40. Lawson SN (1996) Peptides and cutaneous polymodal nociceptor neurones. Prog Brain Res 113:369–385

    CAS  PubMed  Google Scholar 

  41. Alvares D, Fitzgerald M. Building blocks of pain: the regulation of key molecules in spinal sensory neurones during development and following peripheral axotomy. Pain 1999; Suppl 6:S71–S85.

    Google Scholar 

  42. Lawson SN (2002) Phenotype and function of somatic primary afferent nociceptive neurones with C-, Adelta- or Aalpha/beta-fibres. Exp Physiol 87(2):239–244

    CAS  PubMed  Google Scholar 

  43. Light AR, Perl ER (1979) Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol 186(2):117–131

    CAS  PubMed  Google Scholar 

  44. Hoheisel U, Lehmann-Willenbrock E, Mense S (1989) Termination patterns of identified group II and III afferent fibres from deep tissues in the spinal cord of the cat. Neuroscience 28(2):495–507

    CAS  PubMed  Google Scholar 

  45. Jänig W (1996) Neurobiology of visceral afferent neurons: neuroanatomy, functions, organ regulations and sensations. Biol Psychol 42(1–2):29–51

    PubMed  Google Scholar 

  46. Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, Woodbury CJ, Ginty DD (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147(7):1615–1627

    CAS  PubMed  Google Scholar 

  47. Katzenstein MB, Bohn RC (1984) Regeneration of transected dorsal root ganglion cell axons into the spinal cord in adult frogs (Xenopus laevis). Brain Res 300(1):188–191

    CAS  PubMed  Google Scholar 

  48. Frank E, Sah DW (1986) Reformation of specific synaptic connections by regenerating sensory axons in the spinal cord of the bullfrog. Neurochem Pathol 5(3):165–185

    CAS  PubMed  Google Scholar 

  49. Peng YY, Frank E (1988) Anatomical specificity of regenerated muscle sensory afferents in the spinal cord of the bullfrog. J Neurobiol 19(8):727–742

    CAS  PubMed  Google Scholar 

  50. Liuzzi FJ, Lasek RJ (1986) Dorsal root axonal regeneration in the adult frog spinal cord. A model of vertebrate CNS regeneration. Neurochem Pathol 5(3):237–253

    CAS  PubMed  Google Scholar 

  51. Mears SC, Frank E (1994) Specific regeneration of cutaneous sensory afferent fibers in the amphibian spinal cord. Exp Neurol 130(1):115–119

    CAS  PubMed  Google Scholar 

  52. Richardson PM, Issa VM (1984) Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309(5971):791–793

    CAS  PubMed  Google Scholar 

  53. Richardson PM, Verge VM (1986) The induction of a regenerative propensity in sensory neurons following peripheral axonal injury. J Neurocytol 15(5):585–594

    CAS  PubMed  Google Scholar 

  54. Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI (2002) Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34(6):885–893

    CAS  PubMed  Google Scholar 

  55. Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34(6):895–903

    CAS  PubMed  Google Scholar 

  56. Wu D, Zhang Y, Bo X, Huang W, Xiao F, Zhang X, Miao T, Magoulas C, Subang MC, Richardson PM (2007) Actions of neuropoietic cytokines and cyclic AMP in regenerative conditioning of rat primary sensory neurons. Exp Neurol 204(1):66–76

    CAS  PubMed  Google Scholar 

  57. Hoffman PN (2010) A conditioning lesion induces changes in gene expression and axonal transport that enhance regeneration by increasing the intrinsic growth state of axons. Exp Neurol 223(1):11–18

    CAS  PubMed  Google Scholar 

  58. Yang P, Yang Z (2012) Enhancing intrinsic growth capacity promotes adult CNS regeneration. J Neurol Sci 312(1–2):1–6

    CAS  PubMed  Google Scholar 

  59. Blesch A, Lu P, Tsukada S, Alto LT, Roet K, Coppola G, Geschwind D, Tuszynski MH (2012) Conditioning lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: Superiority to camp-mediated effects. Exp Neurol 235(1):162–173

    PubMed  Google Scholar 

  60. Chong MS, Woolf CJ, Haque NS, Anderson PN (1999) Axonal regeneration from injured dorsal roots into the spinal cord of adult rats. J Comp Neurol 410(1):42–54

    CAS  PubMed  Google Scholar 

  61. Kalous A, Keast JR (2010) Conditioning lesions enhance growth state only in sensory neurons lacking calcitonin gene-related peptide and isolectin B4-binding. Neuroscience 166(1):107–121

    CAS  PubMed  Google Scholar 

  62. Neumann S, Woolf CJ (1999) Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23(1):83–91

    CAS  PubMed  Google Scholar 

  63. Ylera B, Ertürk A, Hellal F, Nadrigny F, Hurtado A, Tahirovic S, Oudega M, Kirchhoff F, Bradke F (2009) Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr Biol 19(11):930–936

    CAS  PubMed  Google Scholar 

  64. Ramer MS, Priestley JV, McMahon SB (2000) Functional regeneration of sensory axons into the adult spinal cord. Nature 403(6767):312–316

    CAS  PubMed  Google Scholar 

  65. Ramer MS, Bishop T, Dockery P, Mobarak MS, O’Leary D, Fraher JP, Priestley JV, McMahon SB (2002) Neurotrophin-3-mediated regeneration and recovery of proprioception following dorsal rhizotomy. Mol Cell Neurosci 19(2):239–249

    CAS  PubMed  Google Scholar 

  66. Wang R, King T, Ossipov MH, Rossomando AJ, Vanderah TW, Harvey P, Cariani P, Frank E, Sah DWY, Porreca F (2008) Persistent restoration of sensory function by immediate or delayed systemic artemin after dorsal root injury. Nat Neurosci 11(4):488–496

    CAS  PubMed  Google Scholar 

  67. Harvey P, Gong B, Rossomando AJ, Frank E (2010) Topographically specific regeneration of sensory axons in the spinal cord. Proc Natl Acad Sci USA 107(25):11585–11590

    CAS  PubMed  Google Scholar 

  68. Hanna-Mitchell AT, O’Leary D, Mobarak MS, Ramer MS, McMahon SB, Priestley JV, Kozlova EN, Aldskogius H, Dockery P, Fraher JP (2008) The impact of neurotrophin-3 on the dorsal root transitional zone following injury. Spinal Cord 46(12):804–810

    CAS  PubMed  Google Scholar 

  69. Ramer MS, Duraisingam I, Priestley JV, McMahon SB (2001) Two-tiered inhibition of axon regeneration at the dorsal root entry zone. J Neurosci 21(8):2651–2660

    CAS  PubMed  Google Scholar 

  70. Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP et al (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326(5950):298–301

    CAS  PubMed  Google Scholar 

  71. Blackmore MG, Wang Z, Lerch JK, Motti D, Zhang YP, Shields CB et al (2012) Kruppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proc Natl Acad Sci USA 109(19):7517–7522

    CAS  PubMed  Google Scholar 

  72. Perdigoto AL, Chaudhry N, Barnes GN, Filbin MT, Carter BD (2011) A novel role for PTEN in the inhibition of neurite outgrowth by myelin-associated glycoprotein in cortical neurons. Mol Cell Neurosci 46(1):235–244

    CAS  PubMed  Google Scholar 

  73. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322(5903):963–966

    CAS  PubMed  Google Scholar 

  74. Park KK, Liu K, Hu Y, Kanter JL, He Z (2010) PTEN/mTOR and axon regeneration. Exp Neurol 223(1):45–50

    CAS  PubMed  Google Scholar 

  75. Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13(9):1075–1078

    CAS  PubMed  Google Scholar 

  76. Christie KJ, Webber CA, Martinez JA, Singh B, Zochodne DW (2010) PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons. J Neurosci 30(27):9306–9315

    CAS  PubMed  Google Scholar 

  77. Smith PD, Sun F, Park KK, Cai B, Wang C, Kuwako K, Martinez-Carrasco I, Connolly L, He Z (2009) SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64(5):617–623

    CAS  PubMed  Google Scholar 

  78. Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yankner BA, He Z (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480(7377):372–375

    CAS  PubMed  Google Scholar 

  79. Kurimoto T, Yin Y, Omura K, Gilbert HY, Kim D, Cen LP, Moko L, Kügler S, Benowitz LI (2010) Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci 30(46):15654–15663

    CAS  PubMed  Google Scholar 

  80. Harel R, Iannotti CA, Hoh D, Clark M, Silver J, Steinmetz MP (2012) Oncomodulin affords limited regeneration to injured sensory axons in vitro and in vivo. Exp Neurol 233(2):708–716

    CAS  PubMed  Google Scholar 

  81. Hur EM, Saijilafu, Zhou FQ. Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration. Trends Neurosci 2012; 35(3):164–174.

    Google Scholar 

  82. Jin LQ, Zhang G, Jamison C Jr, Takano H, Haydon PG, Selzer ME (2009) Axon regeneration in the absence of growth cones: acceleration by cyclic AMP. J Comp Neurol 515(3):295–312

    CAS  PubMed  Google Scholar 

  83. Hellal F, Hurtado A, Ruschel J, Flynn KC, Laskowski CJ, Umlauf M, Kapitein LC, Strikis D, Lemmon V, Bixby J, Hoogenraad CC, Bradke F (2011) Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331(6019):928–931

    CAS  PubMed  Google Scholar 

  84. Sengottuvel V, Leibinger M, Pfreimer M, Andreadaki A, Fischer D (2011) Taxol facilitates axon regeneration in the mature CNS. J Neurosci 31(7):2688–2699

    CAS  PubMed  Google Scholar 

  85. Lin S, Liu M, Son YJ, Timothy Himes B, Snow DM, Yu W, Baas PW (2011) Inhibition of Kinesin-5, a microtubule-based motor protein, as a strategy for enhancing regeneration of adult axons. Traffic 12(3):269–286

    CAS  PubMed  Google Scholar 

  86. Miao T, Wu D, Wheeler A, Wang P, Zhang Y, Bo X, Yeh JS, Subang MC, Richardson PM (2011) Two cytokine signaling molecules co-operate to promote axonal transport and growth. Exp Neurol 228(2):165–172

    CAS  PubMed  Google Scholar 

  87. Liu L, Rudin M, Kozlova EN (2000) Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat. Exp Brain Res 131(1):64–73

    CAS  PubMed  Google Scholar 

  88. Fraher JP (1999) The transitional zone and CNS regeneration. J Anat 194(Pt 2):161–182, Corrected and republished in: J Anat 2000; 196 (Pt 1):137–158

    PubMed  Google Scholar 

  89. Kozlova EN, Lukanidin E (1999) Metastasis-associated Mts1 (S100A4) protein is selectively expressed in white matter astrocytes and upregulated after dorsal root or peripheral nerve injury. Glia 27(3):249–258

    CAS  PubMed  Google Scholar 

  90. Giger RJ, Venkatesh K, Chivatakarn O, Raiker SJ, Robak L, Hofer T, Lee H, Rader C (2008) Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems. Restor Neurol Neurosci 26(2–3):97–115

    PubMed  Google Scholar 

  91. Gardiner NJ (2011) Integrins and the extracellular matrix: key mediators of development and regeneration of the sensory nervous system. Dev Neurobiol 71(11):1054–1072

    CAS  PubMed  Google Scholar 

  92. Harvey PA, Lee DH, Qian F, Weinreb PH, Frank E (2009) Blockade of Nogo receptor ligands promotes functional regeneration of sensory axons after dorsal root crush. J Neurosci 29(19):6286295

    Google Scholar 

  93. Steinmetz MP, Horn KP, Tom VJ, Miller JH, Busch SA, Nair D, Silver DJ, Silver J (2005) Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord. J Neurosci 25(35):8066–8076

    CAS  PubMed  Google Scholar 

  94. Zhang Y, Zhang X, Wu D, Verhaagen J, Richardson PM, Yeh J, Bo X (2007) Lentiviral-mediated expression of polysialic acid in spinal cord and conditioning lesion promote regeneration of sensory axons into spinal cord. Mol Ther 15(10):1796–1804

    CAS  PubMed  Google Scholar 

  95. Busch SA, Horn KP, Silver DJ, Silver J (2009) Overcoming macrophage-mediated axonal dieback following CNS injury. J Neurosci 29(32):9967–9976

    CAS  PubMed  Google Scholar 

  96. Carlstedt T (1985) Regenerating axons form nerve terminals at astrocytes. Brain Res 347(1):188–191

    CAS  PubMed  Google Scholar 

  97. Liuzzi FJ, Lasek RJ (1987) Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 237(4815):642–645

    CAS  PubMed  Google Scholar 

  98. Di Maio A, Skuba A, Himes BT, Bhagat SL, Hyun JK, Tessler A, Bishop D, Son Y-J (2011) In vivo imaging of dorsal root regeneration: rapid immobilization and presynaptic differentiation at the CNS/PNS border. J Neurosci 31(12):4569–4582

    PubMed  Google Scholar 

  99. Göritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisén J (2011) A pericyte origin of spinal cord scar tissue. Science 333(6039):238–242

    PubMed  Google Scholar 

  100. Decimo I, Bifari F, Rodriguez FJ, Malpeli G, Dolci S, Lavarini V, Pretto S, Vasquez S, Sciancalepore M, Montalbano A, Berton V, Krampera M, Fumagalli G (2011) Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells 29(12):2062–2076

    CAS  PubMed  Google Scholar 

  101. George R, Griffin JW (1994) The proximo-distal spread of axonal degeneration in the dorsal columns of the rat. J Neurocytol 23(11):657–667

    CAS  PubMed  Google Scholar 

  102. Bignami A, Dahl D, Nguyen BT, Crosby CJ (1981) The fate of axonal debris in Wallerian degeneration of rat optic and sciatic nerves. Electron microscopy and immunofluorescence studies with neurofilament antisera. J Neuropathol Exp Neurol 40(5):537–550

    CAS  PubMed  Google Scholar 

  103. George R, Gfiffin JW (1994) Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model. Exp Neurol 129(2):225–236

    CAS  PubMed  Google Scholar 

  104. Zhang J, Jones M, DeBoy CA, Reich DS, Farrell JA, Hoffman PN et al (2009) Diffusion tensor magnetic resonance imaging of Wallerian degeneration in rat spinal cord after dorsal root axotomy. J Neurosci 29(10):3160–3171

    CAS  PubMed  Google Scholar 

  105. Bignami A, Ralston HJ III (1968) Myelination of fibrillary astroglial processes in long term Wallerian degeneration. The possible relationship to ‘status marmoratus’. Brain Res 11(3):710–713

    CAS  PubMed  Google Scholar 

  106. Liu L, Persson JK, Svensson M, Aldskogius H (1998) Glial cell responses, complement, and clusterin in the central nervous system following dorsal root transection. Glia 23(3):221–238

    CAS  PubMed  Google Scholar 

  107. Rotshenker S (2009) The role of Galectin-3/MAC-2 in the activation of the innate-immune function of phagocytosis in microglia in injury and disease. J Mol Neurosci 39(1–2):99–103

    CAS  PubMed  Google Scholar 

  108. Rotshenker S (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 8:109

    CAS  PubMed  Google Scholar 

  109. McPhail LT, Borisoff JF, Tsang B, Hwi LP, Kwiecien JM, Ramer MS (2007) Protracted myelin clearance hinders central primary afferent regeneration following dorsal rhizotomy and delayed neurotrophin-3 treatment. Neurosci Lett 411(3):206–211

    CAS  PubMed  Google Scholar 

  110. Hosmane S, Tegenge MA, Rajbhandari L, Uapinyoying P, Kumar NG, Thakor N et al (2012) Toll/interleukin-1 receptor domain-containing adapter inducing interferon-β mediates microglial phagocytosis of degenerating axons. J Neurosci 32(22):7745–7757

    CAS  PubMed  Google Scholar 

  111. Daniel PM, Strich SJ (1969) Histological observations on Wallerian degeneration in the spinal cord of the baboon, Papio papio. Acta Neuropathol 12(4):314–328

    CAS  PubMed  Google Scholar 

  112. Bignami A, Ralston HJ 3rd (1969) The cellular reaction to Wallerian degeneration in the central nervous system of the cat. Brain Res 13(3):444–461

    CAS  PubMed  Google Scholar 

  113. Aldskogius H (1974) Indirect and direct Wallerian degeneration in the intramedullary root fibres of the hypoglossal nerve. An electron microscopical study in the kitten. Adv Anat Embryol Cell Biol 50(1):7–78

    CAS  PubMed  Google Scholar 

  114. Kachramanoglou C, Li D, Andrews P, East C, Carlstedt T, Raisman G, Choi D (2011) Novel strategies in brachial plexus repair after traumatic avulsion. Br J Neurosurg 25(1):16–27

    PubMed  Google Scholar 

  115. Anderson DK, Nicolosi GR, Means ED, Hartley LE (1978) Effect of laminectomy on spinal cord blood flow. J Neurosurg 48(2):232–238

    CAS  PubMed  Google Scholar 

  116. Anderson DK, Means ED, Waters TR (1980) Spinal cord energy metabolism in normal and postlaminectomy cats. J Neurosurg 52(3):387–392

    CAS  PubMed  Google Scholar 

  117. Hales JR, Yeo D, Stabback S, Fawcett AA, Kearns R (1981) Effects of anesthesia and laminectomy on regional spinal cord blood flow in conscious sheep. J Neurosurg 54(5):620–626

    CAS  PubMed  Google Scholar 

  118. Skuba A, Himes BT, Son YJ (2011) Live imaging of dorsal root axons after rhizotomy. J Vis Exp 55:e3126

    PubMed  Google Scholar 

  119. Jacob M, Weddell G (1975) Neural intersegmental connection in the spinal root and ganglion region of the rat. J Comp Neurol 161(1):115–123

    CAS  PubMed  Google Scholar 

  120. Moriishi J, Otani K, Tanaka K, Inoue S (1989) The intersegmental anastomoses between spinal nerve roots. Anat Rec 224(1):110–116

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author’s cited work was supported by the Swedish Research Council, The Biomed II Program of the European Commission, Stiftelsen Olle Engkvist, and Sighnhild Engkvist’s Stiftelse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HÃ¥kan Aldskogius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Aldskogius, H., Kozlova, E.N. (2013). Dorsal Root Injury for the Study of Spinal Cord Injury Repair. In: Aldskogius, H. (eds) Animal Models of Spinal Cord Repair. Neuromethods, vol 76. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-197-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-197-4_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-196-7

  • Online ISBN: 978-1-62703-197-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics