Skip to main content

Analysis of Volatile Compounds Emitted by Filamentous Fungi Using Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry

  • Protocol
  • First Online:
Fungal Secondary Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 944))

Abstract

Here, we describe a solid-phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) analytical approach that identifies and analyzes volatile compounds in the headspace above a live fungal culture. This approach is a sensitive, solvent-free, robust technique; most importantly from a practical standpoint, this approach is noninvasive and requires minimal sample handling. Aliquots of liquid fungal cultures are placed into vials equipped with inert septa and equilibrated at a constant temperature, and headspace gases are sampled using an SPME fiber inserted through the septum into the headspace above the fungal culture for a standardized period of time. The outer polymer coating of a fused silica fiber absorbs volatiles from the headspace; the volatiles are then desorbed in the hot GC inlet and chromatographed in the usual manner. The separated compounds are subsequently identified by mass spectrometry. All steps in volatile profiling of a single sample from volatile sorption on a fiber to obtaining a list of volatiles can take as little as 15 min or can be extended to several hours if longer sorption is required for compounds present at very low levels and/or have low rates of diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abanda-Nkpwatt D, Krimm U, Coiner HA, Schreiber L, Schwab W (2006) Plant volatiles can minimize the growth suppression of epiphytic bacteria by the phytopathogenic fungus Botrytis cinerea in co-culture experiments. Environ Exp Bot 56:108–119

    Article  CAS  Google Scholar 

  2. Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5:57–69

    Article  PubMed  CAS  Google Scholar 

  3. Fan LH, Song J, Beaudry RM, Hildebrand PD (2006) Effect of hexanal vapor on spore viability of Penicillium expansum, lesion development on whole apples and fruit volatile biosynthesis. J Food Sci 71:M105–M109

    Article  CAS  Google Scholar 

  4. Huang JQ, Jiang HF, Zhou YQ, Lei Y, Wang SY, Liao BS (2009) Ethylene inhibited aflatoxin biosynthesis is due to oxidative stress alleviation and related to glutathione redox state changes in Aspergillus flavus. Int J Food Microbiol 130:17–21

    Article  PubMed  CAS  Google Scholar 

  5. Mendgen K, Wirsel RSG, Jux A, Hoffmann J, Boland W (2006) Volatiles modulate the development of plant pathogenic rust fungi. Planta 224:1353–1361

    Article  PubMed  CAS  Google Scholar 

  6. Norrman J (1968) Morphogenetic effects of some volatile organic compounds on Pestalotia rhododendri. Arch Mikrobiol 61:128–142

    Article  PubMed  CAS  Google Scholar 

  7. Roze LV, Beaudry RM, Arthur AE, Calvo AM, Linz JE (2007) Aspergillus volatiles regulate aflatoxin synthesis and asexual sporulation in Aspergillus parasiticus. Appl Environ Microbiol 73:7268–7276

    Article  PubMed  CAS  Google Scholar 

  8. Roze LV, Beaudry RM, Keller NP, Linz JE (2004) Regulation of aflatoxin synthesis by FadA/cAMP/protein kinase A signaling in Aspergillus parasiticus. Mycopathologia 158:219–232

    Article  PubMed  CAS  Google Scholar 

  9. Roze LV, Chanda A, Laivenieks M, Beaudry RM, Artymovich KA, Koptina AV, Awad DW, Valeeva D, Jones AD, Linz JE (2010) Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism. BMC Biochem 11:33

    Article  PubMed  Google Scholar 

  10. Roze LV, Koptina AV, Laivenieks M, Beaudry RM, Jones DA, Kanarsky AV, Linz JE (2011) Willow volatiles influence growth, development, and secondary metabolism in Aspergillus parasiticus. Appl Microbiol Biotechnol 92(2):359–370

    Article  PubMed  CAS  Google Scholar 

  11. Wright MS, Greene-McDowelle DM, Zeringue HJ, Bhatnagar D, Cleveland TE (2000) Effects of volatile aldehydes from Aspergillus-resistant varieties of corn on Aspergillus parasiticus growth and aflatoxin biosynthesis. Toxicon 38:1215–1223

    Article  PubMed  CAS  Google Scholar 

  12. Zeringue HJ, Brown RL, Neucere JN, Cleveland TE (1996) Relationships between C-6-C-12 alkanal and alkenal volatile contents and resistance of maize genotypes to Aspergillus flavus and aflatoxin production. J Agric Food Chem 44:403–407

    Article  CAS  Google Scholar 

  13. Zeringue HJ Jr, McCormick SP (1990) Aflatoxin production in cultures of Aspergillus flavus incubated in atmospheres containing selected cotton leaf-derived volatiles. Toxicon 28:445–448

    Article  PubMed  CAS  Google Scholar 

  14. Zonneveld BJM (1988) Effect of carbon-dioxide on fruiting in Aspergillus nidulans. Trans Br Mycol Soc 91:625–629

    Article  CAS  Google Scholar 

  15. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  PubMed  CAS  Google Scholar 

  16. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  PubMed  CAS  Google Scholar 

  17. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  PubMed  Google Scholar 

  18. Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  PubMed  CAS  Google Scholar 

  19. Kang JH, Liu G, Shi F, Jones AD, Beaudry RM, Howe GA (2010) The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiol 154:262–272

    Article  PubMed  CAS  Google Scholar 

  20. Mercier J, Jimenez JI (2007) Potential of the volatile-producing fungus Muscodor albus for control of building molds. Can J Microbiol 53:404–410

    Article  PubMed  CAS  Google Scholar 

  21. Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270–277

    Article  PubMed  CAS  Google Scholar 

  22. Ozaki K, Ohta A, Iwata C, Horikawa A, Tsuji K, Ito E, Ikai Y, Harada K (2008) Lysis of cyanobacteria with volatile organic compounds. Chemosphere 71:1531–1538

    Article  PubMed  CAS  Google Scholar 

  23. Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61:729–739

    Article  PubMed  Google Scholar 

  24. Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244

    Article  PubMed  CAS  Google Scholar 

  25. Last RL, Jones AD, Shachar-Hill Y (2007) Towards the plant metabolome and beyond. Nat Rev Mol Cell Biol 8:167–174

    Article  PubMed  CAS  Google Scholar 

  26. Zhang CL, Wang GP, Mao LJ, Komon-Zelazowska M, Yuan ZL, Lin FC, Druzhinina IS, Kubicek CP (2010) Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds. Fungal Biol 114:797–808

    Article  PubMed  CAS  Google Scholar 

  27. Athukorala SN, Fernando WG, Rashid KY (2009) Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can J Microbiol 55:1021–1032

    Article  PubMed  CAS  Google Scholar 

  28. Demyttenaere JC, Morina RM, De Kimpe N, Sandra P (2004) Use of headspace solid-phase microextraction and headspace sorptive extraction for the detection of the volatile metabolites produced by toxigenic Fusarium species. J Chromatogr A 1027:147–154

    Article  PubMed  CAS  Google Scholar 

  29. Demyttenaere JC, Morina RM, Sandra P (2003) Monitoring and fast detection of mycotoxin-producing fungi based on headspace solid-phase microextraction and headspace sorptive extraction of the volatile metabolites. J Chromatogr A 985:127–135

    Article  PubMed  CAS  Google Scholar 

  30. Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51

    Article  PubMed  CAS  Google Scholar 

  31. Thorn RM, Reynolds DM, Greenman J (2011) Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. J Microbiol Methods 84:258–264

    Article  PubMed  CAS  Google Scholar 

  32. Turner AP, Magan N (2004) Electronic noses and disease diagnostics. Nat Rev Microbiol 2:161–166

    Article  PubMed  CAS  Google Scholar 

  33. Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:181–189

    Article  PubMed  CAS  Google Scholar 

  34. Rossouw D, Naes T, Bauer FF (2008) Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. BMC Genomics 9:530

    Article  PubMed  Google Scholar 

  35. Tikunov Y, Lommen A, de Vos CH, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139:1125–1137

    Article  PubMed  CAS  Google Scholar 

  36. Song J, Fan LH, Beaudry RM (1998) Application of solid phase microextraction and gas chromatography time-of-flight mass spectrometry for rapid analysis of flavor volatiles in tomato and strawberry fruits. J Agric Food Chem 46:3721–3726

    Article  CAS  Google Scholar 

  37. Skory CD, Chang PK, Linz JE (1993) Regulated expression of the nor-1 and ver-1 genes associated with aflatoxin biosynthesis. Appl Environ Microbiol 59:1642–1646

    PubMed  CAS  Google Scholar 

  38. Retention index guide http://massfinder.com/wiki/Retention_index_guide.

  39. Kovats E (1958) Gas-chromatographische charakterisierung organischer verbindungen. 1. Retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv Chim Acta 41:1915–1932

    Article  CAS  Google Scholar 

  40. Stein SE (1994) Estimating probabilities of correct identification from results of mass-spectral library searches. J Am Soc Mass Spectrom 5:316–323

    Article  CAS  Google Scholar 

  41. Bartelt RJ (1997) Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles. Anal Chem 69:364–372

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the NIH (CA52003-18) to John E. Linz and Ludmila V. Roze and by funds from the Michigan Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila V. Roze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Roze, L.V., Beaudry, R.M., Linz, J.E. (2012). Analysis of Volatile Compounds Emitted by Filamentous Fungi Using Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry. In: Keller, N., Turner, G. (eds) Fungal Secondary Metabolism. Methods in Molecular Biology, vol 944. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-122-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-122-6_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-121-9

  • Online ISBN: 978-1-62703-122-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics