Skip to main content

Myelodysplasia and Myeloid Proliferations

  • Chapter
  • First Online:
Pediatric Neoplasia

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 909 Accesses

Abstract

Myelodysplastic syndrome (MDS) and myeloproliferative disorders are uncommon in the pediatric age group, each constituting less than 5 % of all hematological malignancies. The annual incidence of MDS per million for children up to 14 years of age is 1.8. There are several differences in MDS observed in children and those in adults (discussed later) due to which the classification systems developed for adult MDS (Leukemia 18(12):2008–2014, 2004; Blood 100(7):2292–2302, 2002) are less relevant in children. In the 2008 WHO classification childhood MDS is classified as a separate group. A provisional category of refractory cytopenia of childhood has been introduced to accommodate the significant proportion of children who present with persistent, idiopathic neutropenia or thrombocytopenia in the absence of anemia (Pathology and genetics of tumours of haematopoietic and lymphoid tissues. World Health Organization classification of tumours, 2008). MDS associated with Down syndrome is categorized separately by the WHO as “myeloid proliferations related to Down syndrome.” Philadelphia chromosome positive chronic myelogenous leukemia is rare in children, comprising 1–3 % of all childhood leukemias (Pediatrics 116(1):140–143, 2005). Juvenile myelomonocytic leukemia is a MDS/MPN overlap neoplasm that occurs in children and adolescents with an annual incidence of 1.2 per million children up to 14 years of age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasle H, Baumann I, Bergstrasser E, Fenu S, Fischer A, Kardos G, et al. The international prognostic scoring system (IPSS) for childhood myelodysplastic syndrome (MDS) and juvenile myelomonocytic leukemia (JMML). Leukemia. 2004;18(12):2008–14.

    PubMed  CAS  Google Scholar 

  2. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292–302.

    PubMed  CAS  Google Scholar 

  3. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. World Health Organization classification of tumours. 4th ed. Lyon, France: IARC Press; 2008. p. 262.

    Google Scholar 

  4. Millot F, Traore P, Guilhot J, Nelken B, Leblanc T, Leverger G, et al. Clinical and biological features at diagnosis in 40 children with chronic myeloid leukemia. Pediatrics. 2005;116(1):140–3.

    PubMed  Google Scholar 

  5. Hasle H. Myelodysplastic and myeloproliferative disorders in children. Curr Opin Pediatr. 2007;19(1):1–8.

    PubMed  Google Scholar 

  6. Luna-Fineman S, Shannon KM, Atwater SK, Davis J, Masterson M, Ortega J, et al. Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood. 1999;93(2):459–66.

    PubMed  CAS  Google Scholar 

  7. Niemeyer CM, Arico M, Basso G, Biondi A, Cantu Rajnoldi A, Creutzig U, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European working group on myelodysplastic syndromes in childhood (EWOG-MDS). Blood. 1997;89(10):3534–43.

    PubMed  CAS  Google Scholar 

  8. Emanuel PD, Bates L, Castleberry RP, Gualtieri RJ, Zuckerman KS. Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood. 1991;77(5):925–9.

    PubMed  CAS  Google Scholar 

  9. Emanuel PD. RAS pathway mutations in juvenile myelomonocytic leukemia. Acta Haematol. 2008;119(4):207–11.

    PubMed  CAS  Google Scholar 

  10. Flotho C, Valcamonica S, Mach-Pascual S, Schmahl G, Corral L, Ritterbach J, et al. RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia. 1999;13(1):32–7.

    PubMed  CAS  Google Scholar 

  11. Miyauchi J, Asada M, Sasaki M, Tsunematsu Y, Kojima S, Mizutani S. Mutations of the N-ras gene in juvenile chronic myelogenous leukemia. Blood. 1994;83(8997):2248–54.

    PubMed  CAS  Google Scholar 

  12. Shen M, Harper PS, Upadhyaya M. Molecular genetics of neurofibromatosis type 1 (NF1). J Med Genet. 1996;33(1):2–17.

    PubMed  CAS  Google Scholar 

  13. Side L, Taylor B, Cayouette M, Conner E, Thompson P, Luce M, et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med. 1997;336(24):1713–20.

    PubMed  CAS  Google Scholar 

  14. Maris JM, Wiersma SR, Mahgoub N, Thompson P, Geyer RJ, Hurwitz CG, et al. Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer. 1997;79(7):1438–46.

    PubMed  CAS  Google Scholar 

  15. Side LE, Emanuel PD, Taylor B, Franklin J, Thompson P, Castleberry RP, et al. Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood. 1998;92(1):267–72.

    PubMed  CAS  Google Scholar 

  16. Bastida P, Garcia-Minaur S, Ezquieta B, Dapena JL, Sanchez de Toledo J. Myeloproliferative disorder in Noonan syndrome. J Pediatr Hematol Oncol. 2011;33(1):e43–5.

    PubMed  Google Scholar 

  17. Tartaglia M, Zampino G, Gelb BD. Noonan syndrome: clinical aspects and molecular pathogenesis. Mol Syndromol. 2010;1(1):2–26.

    PubMed  CAS  Google Scholar 

  18. Cirstea IC, Kutsche K, Dvorsky R, Gremer L, Carta C, Horn D, et al. A restricted spectrum of NRAS mutations causes Noonan syndrome. Nat Genet. 2010;42(1):27–9.

    PubMed  CAS  Google Scholar 

  19. Martinelli S, De Luca A, Stellacci E, Rossi C, Checquolo S, Lepri F, et al. Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet. 2010;87(2):250–7.

    PubMed  CAS  Google Scholar 

  20. Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA, et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet. 2007;39(1):70–4.

    PubMed  CAS  Google Scholar 

  21. Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003;34(2):148–50.

    PubMed  CAS  Google Scholar 

  22. Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood. 2004;103(6):2325–31.

    PubMed  CAS  Google Scholar 

  23. Kratz CP, Niemeyer CM, Castleberry RP, Cetin M, et. al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood. 2005;106(6): 2183–85.

    PubMed  Google Scholar 

  24. Liu YL, Castleberry RP, Emanuel PD. PTEN deficiency is a common defect in juvenile myelomonocytic leukemia. Leuk Res. 2009;33(5):671–7.

    PubMed  CAS  Google Scholar 

  25. Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood. 2009;114(9):1859–63.

    PubMed  CAS  Google Scholar 

  26. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissue (IARC WHO classification of tumours). 4th ed. Lyon, France: IARC press; 2008.

    Google Scholar 

  27. Pinkel D. Differentiating juvenile myelomonocytic leukemia from infectious disease. Blood. 1998;91(171):365–7.

    PubMed  CAS  Google Scholar 

  28. Cioc AM, Wagner JE, MacMillan ML, DeFor T, Hirsch B. Diagnosis of myelodysplastic syndrome among a cohort of 119 patients with fanconi anemia: morphologic and cytogenetic characteristics. Am J Clin Pathol. 2010;133(1):92–100.

    PubMed  CAS  Google Scholar 

  29. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the world health organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.

    PubMed  CAS  Google Scholar 

  30. Manabe A, Yoshimasu T, Ebihara Y, Yagasaki H, Wada M, Ishikawa K, et al. Viral infections in juvenile myelomonocytic leukemia: prevalence and clinical implications. J Pediatr Hematol Oncol. 2004;26(10):636–41.

    PubMed  Google Scholar 

  31. Watanabe N, Yoshimi A, Kamachi Y, Kawabe T, Muramatsu H, Matsumoto K, et al. Wiskott-Aldrich syndrome is an important differential diagnosis in male infants with juvenile myelomonocytic leukemialike features. J Pediatr Hematol Oncol. 2007;29(12):836–8.

    PubMed  CAS  Google Scholar 

  32. Archambeault S, Flores NJ, Yoshimi A, Kratz CP, Reising M, Fischer A, et al. Development of an allele-specific minimal residual disease assay for patients with juvenile myelomonocytic leukemia. Blood. 2008;111(3):1124–7.

    PubMed  CAS  Google Scholar 

  33. Yoshida N, Yagasaki H, Xu Y, Matsuda K, Yoshimi A, Takahashi Y, et al. Correlation of clinical features with the mutational status of GM-CSF signaling pathway-related genes in juvenile myelomonocytic leukemia. Pediatr Res. 2009;65(3):334–40.

    PubMed  CAS  Google Scholar 

  34. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the international microarray innovations in leukemia study group. J Clin Oncol. 2010;28(15):2529–37.

    PubMed  CAS  Google Scholar 

  35. Mills KI, Kohlmann A, Williams PM, Wieczorek L, Liu WM, Li R, et al. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome. Blood. 2009;114(5):1063–72.

    PubMed  CAS  Google Scholar 

  36. Bresolin S, Zecca M, Flotho C, Trentin L, Zangrando A, Sainati L, et al. Gene expression-based classification as an independent predictor of clinical outcome in juvenile myelomonocytic leukemia. J Clin Oncol. 2010;28(11):1919–27.

    PubMed  Google Scholar 

  37. Chang YH, Jou ST, Lin DT, Lu MY, Lin KH. Differentiating juvenile myelomonocytic leukemia from chronic myeloid leukemia in childhood. J Pediatr Hematol Oncol. 2004;26(4):236–42.

    PubMed  Google Scholar 

  38. Gupta N, Gupta R, Sharawat SK, Bakhshi S. Childhood chronic myeloid leukemia with monocytosis. Indian J Pediatr. 2010;77(10):1143–5.

    PubMed  Google Scholar 

  39. Aurer I, Butturini A, Gale RP. BCR-ABL rearrangements in children with Philadelphia chromosome-positive chronic myelogenous leukemia. Blood. 1991;78(9):2407–10.

    PubMed  CAS  Google Scholar 

  40. Scrideli CA, de Oliveira FM, Brassesco MS, de Paula QR, Bernardes JE, Valera ET, et al. Is p190 bcr-abl rearrangement necessary for acute transformation in some p210 CML of childhood? Leuk Res. 2009;33(3):495–9.

    PubMed  CAS  Google Scholar 

  41. Hasle H, Kerndrup G, Jacobsen BB. Childhood myelodysplastic syndrome in Denmark: incidence and predisposing conditions. Leukemia. 1995;9(9):1569–72.

    PubMed  CAS  Google Scholar 

  42. Rytting ME. Pediatric myelodysplastic syndromes. Curr Hematol Rep. 2004;3(3):173–7.

    PubMed  Google Scholar 

  43. Niemeyer CM, Kratz CP, Hasle H. Pediatric myelodysplastic syndromes. Curr Treat Options Oncol. 2005;6(3):209–14.

    PubMed  Google Scholar 

  44. McKenna RW. Myelodysplasia and myeloproliferative disorders in children. Am J Clin Pathol. 2004;122(Suppl):S58–69.

    PubMed  Google Scholar 

  45. Mueller BU, Tannenbaum S, Pizzo PA. Bone marrow aspirates and biopsies in children with human immunodeficiency virus infection. J Pediatr Hematol Oncol. 1996;18:266–71.

    PubMed  CAS  Google Scholar 

  46. Alter BP. Bone marrow failure: a child is not just a small adult (but an adult can have a childhood disease). Hematology Am Soc Hematol Educ Program. 2005:96–103.

    Google Scholar 

  47. Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematology Am Soc Hematol Educ Program. 2007:29–39.

    Google Scholar 

  48. Clinton C, Gazda HT. Diamond-Blackfan anemia. In: Pagon RA, Bird TC, Dolan CR, et al., editors. GeneReviews. Seattle: University of Washington; 1993.

    Google Scholar 

  49. Dror Y. Shwachman-Diamond syndrome: implications for understanding the molecular basis of leukaemia. Expert Rev Mol Med. 2008;10:e38.

    PubMed  Google Scholar 

  50. Kearns WG, Sutton JF, Maciejewski JP, Young NS, Liu JM. Genomic instability in bone marrow failure syndromes. Am J Hematol. 2004;76(3):220–4.

    PubMed  Google Scholar 

  51. Morrissette JJD, de Chadarevian JP, Kolb EA. Familial mosaic monosomy 7 syndrome. In: Pagon RA, Bird TC, Dolan CR, et al., editors. GeneReviews. Seattle: University of Washington; 1993.

    Google Scholar 

  52. Shimamura A. Inherited bone marrow failure syndromes: molecular features. Hematology Am Soc Hematol Educ Program. 2006:63–71.

    Google Scholar 

  53. Bader-Meunier B, Rötig A, Mielot F, Lavergne JM, Croisille L, Rustin P, et al. Refractory anaemia and mitochondrial cytopathy in childhood. Br J Haematol. 1994;87(2):381–5.

    PubMed  CAS  Google Scholar 

  54. Hasle H. Myelodysplastic syndromes in childhood–classification, epidemiology, and treatment. Leuk Lymphoma. 1994;13(1–2):11–26.

    PubMed  CAS  Google Scholar 

  55. Polychronopoulou S, Panagiotou JP, Kossiva L, Mavrou A, Anagnostou D, Haidas S. Clinical and morphological features of paediatric myelodysplastic syndromes: a review of 34 cases. Acta Paediatr. 2004;93(8):1015–23.

    PubMed  CAS  Google Scholar 

  56. Tuncer MA, Pagliuca A, Hicsonmez G, Yetgin S, Ozsoylu S, Mufti GJ. Primary myelodysplastic syndrome in children: the clinical experience in 33 cases. Br J Haematol. 1992;82(2):347–53.

    PubMed  CAS  Google Scholar 

  57. Angelidis P, Kojouri K, Lee J, Kern W, Mulvihill JJ, Li S. Trisomy 1q in a patient with severe aplastic anemia. Cancer Genet Cytogenet. 2006;169(1):73–5.

    PubMed  CAS  Google Scholar 

  58. Maciejewski JP, Selleri C. Evolution of clonal cytogenetic abnormalities in aplastic anemia. Leuk Lymphoma. 2004;45(3):433–40.

    PubMed  Google Scholar 

  59. Koh Y, Lee HR, Song EY, Kim HK, Kim I, Park S, et al. Hypoplastic myelodysplastic syndrome (h-MDS) is a distinctive clinical entity with poorer prognosis and frequent karyotypic and FISH abnormalities compared to aplastic anemia (AA). Leuk Res. 2010;34(10):1344–50.

    PubMed  Google Scholar 

  60. Ohshima K, Karube K, Shimazaki K, Kamma H, Suzumiya J, Hamasaki M, et al. Imbalance between apoptosis and telomerase activity in myelodysplastic syndromes: possible role in ineffective hemopoiesis. Leuk Lymphoma. 2003;44(8):1339–46.

    PubMed  CAS  Google Scholar 

  61. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A. The role of apoptosis, proliferation, and the bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood. 2000;96(12):3932–8.

    PubMed  CAS  Google Scholar 

  62. Papadaki HA, Eliopoulos GD. The role of apoptosis in the pathophysiology of chronic neutropenias associated with bone marrow failure. Cell Cycle (Georgetown, Tex). 2003;2(5):447–51.

    CAS  Google Scholar 

  63. Rosselli F. Fanconi anaemia syndrome and apoptosis: state of the art. Apoptosis. 1998;3:229–36.

    PubMed  CAS  Google Scholar 

  64. Parikh S, Bessler M. Recent insights into inherited bone marrow failure syndromes. Curr Opin Pediatr. 2012;24(1):23–32.

    PubMed  CAS  Google Scholar 

  65. D’Andrea AD, Grompe M. The fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003;3:23–34.

    PubMed  Google Scholar 

  66. Carlsson G, Aprikyan AA, Tehranchi R, Dale DC, Porwit A, Hellström-Lindberg E, et al. Kostmann syndrome: severe congenital neutropenia associated with defective expression of Bcl-2, constitutive mitochondrial release of cytochrome c, and excessive apoptosis of myeloid progenitor cells. Blood. 2004;103(9):3355–61.

    PubMed  CAS  Google Scholar 

  67. Liu JM, Ellis SR. Ribosomes and marrow failure: coincidental association or molecular paradigm? Blood. 2006;107:4583–8.

    PubMed  CAS  Google Scholar 

  68. Dokal I. Fanconi’s anaemia and related bone marrow failure syndromes. Br Med Bull. 2006;77–78:37–53.

    PubMed  Google Scholar 

  69. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23:166–75.

    PubMed  CAS  Google Scholar 

  70. Antillon F, Raimondi SC, Fairman J, Liang H, Nagarajan L, Head D, et al. 5q- in a child with refractory anemia with excess blasts: similarities to 5q- syndrome in adults. Cancer Genet Cytogenet. 1998;105(2):119–22.

    PubMed  CAS  Google Scholar 

  71. Kardos G, Baumann I, Passmore SJ, Locatelli F, Hasle H, Schultz KR, et al. Refractory anemia in childhood: a retrospective analysis of 67 patients with particular reference to monosomy 7. Blood. 2003;102(6):1997–2003.

    PubMed  CAS  Google Scholar 

  72. Touliatou V, Kolialexi A, Tsangaris GT, Moschovi M, Polychronopoulou S, Mavrou A. Conventional cytogenetics and fluorescence in situ hybridization in persistent cytopenias and myelodysplastic syndromes in childhood. Anticancer Res. 2004;24(6):3945–9.

    PubMed  CAS  Google Scholar 

  73. Tsurusawa M, Manabe A, Hayashi Y, Akiyama Y, Kigasawa H, Inada H, et al. Therapy-related myelodysplastic syndrome in childhood: a retrospective study of 36 patients in Japan. Leuk Res. 2005;29(6):625–32.

    PubMed  CAS  Google Scholar 

  74. Mehta PA, Harris RE, Davies SM, Kim MO, Mueller R, Lampkin B, et al. Numerical chromosomal changes and risk of development of myelodysplastic syndrome—acute myeloid leukemia in patients with fanconi anemia. Cancer Genet Cytogenet. 2010;203(2):180–6.

    PubMed  CAS  Google Scholar 

  75. Lasky J, Sakamoto KM. Topics in pediatric leukemia—myelodysplastic and myeloproliferative disorders of childhood. MedGenMed. 2005;7(1):21.

    PubMed  Google Scholar 

  76. Pitman SD, Victorio A, Rowsell E, Morris J, Wang J. 5q- syndrome in a child with slowly progressive pancytopenia: a case report and review of the literature. J Pediatr Hematol Oncol. 2006;28(3):115–9.

    PubMed  CAS  Google Scholar 

  77. Shikano T, Ishikawa Y, Anakura M. Myelodysplastic syndrome with partial deletion of the long arm of chromosome 5: first report of a case in a child. Acta Paediatr Jpn. 1992;34(5):539–42.

    PubMed  CAS  Google Scholar 

  78. Uyttebroeck A, Brock P, De Groote B, Renard M, Dal Cin P, Van den Berghe H, et al. 5q- syndrome in a child. Cancer Genet Cytogenet. 1995;80(2):121–3.

    PubMed  CAS  Google Scholar 

  79. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.

    PubMed  CAS  Google Scholar 

  80. Passmore SJ, Hann IM, Stiller CA, Ramani P, Swansbury GJ, Gibbons B, et al. Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood. 1995;85(7):1742–50.

    PubMed  CAS  Google Scholar 

  81. Mandel K, Dror Y, Poon A, Freedman MH. A practical, comprehensive classification for pediatric myelodysplastic syndromes: the CCC system. J Pediatr Hematol Oncol. 2002;24(5):343–52.

    PubMed  Google Scholar 

  82. Mrozek K, Prior TW, Edwards C, Marcucci G, Carroll AJ, Snyder PJ, et al. Comparison of cytogenetic and molecular genetic detection of t(8;21) and inv(16) in a prospective series of adults with de novo acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol. 2001;19(9):2482–92.

    PubMed  CAS  Google Scholar 

  83. Bernasconi P, Cavigliano PM, Boni M, Calatroni S, Klersy C, Giardini I, et al. Is FISH a relevant prognostic tool in myelodysplastic syndromes with a normal chromosome pattern on conventional cytogenetics? A study on 57 patients. Leukemia. 2003;17(11):2107–12.

    PubMed  CAS  Google Scholar 

  84. Costa D, Valera S, Carrio A, Arias A, Munoz C, Rozman M, et al. Do we need to do fluorescence in situ hybridization analysis in myelodysplastic syndromes as often as we do? Leuk Res. 2010;34(11):1437–41.

    PubMed  Google Scholar 

  85. Cuneo A, Bigoni R, Cavazzini F, Bardi A, Roberti MG, Agostini P, et al. Incidence and significance of cryptic chromosome aberrations detected by fluorescence in situ hybridization in acute myeloid leukemia with normal karyotype. Leukemia. 2002;16(9):1745–51.

    PubMed  CAS  Google Scholar 

  86. Flactif M, Lai JL, Preudhomme C, Fenaux P. Fluorescence in situ hybridization improves the detection of monosomy 7 in myelodysplastic syndromes. Leukemia. 1994;8(6):1012–8.

    PubMed  CAS  Google Scholar 

  87. Jakovleva K, Ogard I, Arvidsson I, Jacobsson B, Swolin B, Hast R. Masked monosomy 7 in myelodysplastic syndromes is uncommon and of undetermined clinical significance. Leuk Res. 2001;25(3):197–203.

    PubMed  CAS  Google Scholar 

  88. Mallo M, Arenillas L, Espinet B, Salido M, Hernandez JM, Lumbreras E, et al. Fluorescence in situ hybridization improves the detection of 5q31 deletion in myelodysplastic syndromes without cytogenetic evidence of 5q-. Haematologica. 2008;93(7):1001–8.

    PubMed  Google Scholar 

  89. Panani AD, Pappa V. Hidden chromosome 8 abnormalities detected by FISH in adult primary myelodysplastic syndromes. In Vivo. 2005;19(6):979–81.

    PubMed  Google Scholar 

  90. Rigolin GM, Bigoni R, Milani R, Cavazzini F, Roberti MG, Bardi A, et al. Clinical importance of interphase cytogenetics detecting occult chromosome lesions in myelodysplastic syndromes with normal karyotype. Leukemia. 2001;15(12):1841–7.

    PubMed  CAS  Google Scholar 

  91. Romeo M, Chauffaille Mde L, Silva MR, Bahia DM, Kerbauy J. Comparison of cytogenetics with FISH in 40 myelodysplastic syndrome patients. Leuk Res. 2002;26(11):993–6.

    PubMed  CAS  Google Scholar 

  92. Wilkens L, Tchinda J, Burkhardt D, Nolte M, Werner M, Georgii A. Analysis of hematologic diseases using conventional karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH). Hum Pathol. 1998;29(8):833–9.

    PubMed  CAS  Google Scholar 

  93. Wilkens L, Burkhardt D, Tchinda J, Busche G, Werner M, Nolte M, et al. Cytogenetic aberrations in myelodysplastic syndrome detected by comparative genomic hybridization and fluorescence in situ hybridization. Diagn Mol Pathol. 1999;8(1):47–53.

    PubMed  CAS  Google Scholar 

  94. Cherry AM, Brockman SR, Paternoster SF, Hicks GA, Neuberg D, Higgins RR, et al. Comparison of interphase FISH and metaphase cytogenetics to study myelodysplastic syndrome: an eastern cooperative oncology group (ECOG) study. Leuk Res. 2003;27(12):1085–90.

    PubMed  CAS  Google Scholar 

  95. Ketterling RP, Wyatt WA, VanWier SA, Law M, Hodnefield JM, Hanson CA, et al. Primary myelodysplastic syndrome with normal cytogenetics: utility of ‘FISH panel testing’ and M-FISH. Leuk Res. 2002;26(3):235–40.

    PubMed  CAS  Google Scholar 

  96. Pitchford CW, Hettinga AC, Reichard KK. Fluorescence in situ hybridization testing for −5/5q, -7/7q, +8, and del(20q) in primary myelodysplastic syndrome correlates with conventional cytogenetics in the setting of an adequate study. Am J Clin Pathol. 2010;133(2):260–4.

    PubMed  Google Scholar 

  97. Douet-Guilbert N, Herry A, LE Bris MJ, Gueganic N, Bovo C, Morel F, et al. Interphase FISH does not improve the detection of DEL(5q) and DEL(20q) in myelodysplastic syndromes. Anticancer Res. 2011;31(3):1007–10.

    PubMed  Google Scholar 

  98. Bench AJ, Nacheva EP, Hood TL, Holden JL, French L, Swanton S, et al. Chromosome 20 deletions in myeloid malignancies: reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes. UK cancer cytogenetics group (UKCCG). Oncogene. 2000;19(34):3902–13.

    PubMed  CAS  Google Scholar 

  99. Hackanson B, Robbel C, Wijermans P, Lübbert M. In vivo effects of decitabine in myelodysplasia and acute myeloid leukemia: review of cytogenetic and molecular studies. Ann Hematol. 2005;84(1):32–8.

    PubMed  CAS  Google Scholar 

  100. Zhao N, Stoffel A, Wang PW, Eisenbart JD, Espinosa III R, Larson RA, et al. Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1–1.5 mb and preparation of a PAC-based physical map. Proc Natl Acad Sci USA. 1997;94(13):6948–53.

    PubMed  CAS  Google Scholar 

  101. Anastasi J, Vardiman JW, Rudinsky R, Patel M, Nachman J, Rubin CM, et al. Direct correlation of cytogenetic findings with cell morphology using in situ hybridization: an analysis of suspicious cells in bone marrow specimens of two patients completing therapy for acute lymphoblastic leukemia. Blood. 1991;77(11):2456–62.

    PubMed  CAS  Google Scholar 

  102. Anderson K, Arvidsson I, Jacobsson B, Hast R. Fluorescence in situ hybridization for the study of cell lineage involvement in myelodysplastic syndromes with chromosome 5 anomalies. Cancer Genet Cytogenet. 2002;136(2):101–7.

    PubMed  CAS  Google Scholar 

  103. Lockwood WW, Chari R, Chi B, Lam WL. Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. Eur J Hum Genet. 2006;14:139–48.

    PubMed  CAS  Google Scholar 

  104. Gondek LP, Haddad AS, O’Keefe CL, Tiu R, Wlodarski MW, Sekeres MA, et al. Detection of cryptic chromosomal lesions including acquired segmental uniparental disomy in advanced and low-risk myelodysplastic syndromes. Exp Hematol. 2007;35(11):1728–38.

    PubMed  CAS  Google Scholar 

  105. Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood. 2008;111(3):1534–42.

    PubMed  CAS  Google Scholar 

  106. Makishima H, Rataul M, Gondek LP, Huh J, Cook JR, Theil KS, et al. FISH and SNP-A karyotyping in myelodysplastic syndromes: improving cytogenetic detection of del(5q), monosomy 7, del(7q), trisomy 8 and del(20q). Leuk Res. 2010;34(4):447–53.

    PubMed  CAS  Google Scholar 

  107. O’Keefe CL, Tiu R, Gondek LP, Powers J, Theil KS, Kalaycio M, et al. High-resolution genomic arrays facilitate detection of novel cryptic chromosomal lesions in myelodysplastic syndromes. Exp Hematol. 2007;35(2):240–51.

    PubMed  Google Scholar 

  108. Tiu RV, Gondek LP, O’Keefe CL, Elson P, Huh J, Mohamedali A, et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood. 2011;117(17):4552–60.

    PubMed  CAS  Google Scholar 

  109. Cannon HE. Acute lymphatic leukemia: report of a case in an eleventh month Mongolian idiot. New Orleans Med Surg J. 1930;94(3):289–93.

    Google Scholar 

  110. Kivivuori SM, Rajantie J, Siimes MA. Peripheral blood cell counts in infants with Down’s syndrome. Clin Genet. 1996;49:15–9.

    PubMed  CAS  Google Scholar 

  111. Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumors in individuals with Down’s syndrome. Lancet. 2000;355:165–9.

    PubMed  CAS  Google Scholar 

  112. Xavier AC, Ge Y, Taub JW. Down syndrome and malignancies: a unique clinical relationship: a paper from the 2008 William Beaumont Hospital symposium on molecular pathology. J Mol Diagn. 2009;11(5):371–80.

    PubMed  CAS  Google Scholar 

  113. Yang Q, Rasmussen SA, Friedman JM. Mortality associated with Down’s syndrome in the USA from 1983 to 1997: a population-based study. Lancet. 2002;359(9311):1019–25.

    PubMed  Google Scholar 

  114. Fonatsch C. The role of chromosome 21 in hematology and oncology. Genes Chromosomes Cancer. 2010;49(6):497–508.

    PubMed  CAS  Google Scholar 

  115. Roy A, Roberts I, Norton A, Vyas P. Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in Down syndrome: a multi-step model of myeloid leukaemogenesis. Br J Haematol. 2009;147(1):3–12.

    PubMed  CAS  Google Scholar 

  116. Xavier AC, Ge Y, Taub J. Unique clinical and biological features of leukemia in Down syndrome children. Expert Rev Hematol. 2010;3(2):175–86.

    PubMed  CAS  Google Scholar 

  117. Zipursky A. Transient leukemia-a benign form of leukemia in ewborn infants with trisomy 21. Br J Haematol. 2003;120:930–8.

    PubMed  Google Scholar 

  118. Zwaan CM, Reinhardt D, Hitzler J, Vyas P. Acute leukemias in children with Down syndrome. Hematol Oncol Clin North Am. 2010;24(1):19–34.

    PubMed  Google Scholar 

  119. Wechsler J, Greene M, McDevitt MA, Anastasi J, Karp JE, Le Beau MM, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet. 2002;32(1):148–52.

    PubMed  CAS  Google Scholar 

  120. Ahmed M, Sternberg A, Hall G, Thomas A, Smith O, O’Marcaigh A, et al. Natural history of GATA1 mutations in Down syndrome. Blood. 2004;103(7):2480–9.

    PubMed  CAS  Google Scholar 

  121. Crispino JD. GATA1 mutations in Down syndrome: implications for biology and diagnosis of children with transient myeloproliferative disorder and acute megakaryoblastic leukemia. Pediatr Blood Cancer. 2005;44(1):40–4.

    PubMed  Google Scholar 

  122. Greene ME, Mundschau G, Wechsler J, McDevitt M, Gamis A, Karp J, et al. Mutations in GATA1 in both transient myeloproliferative disorder and acute megakaryoblastic leukemia of Down syndrome. Blood Cells Mol Dis. 2003;31(3):351–6.

    PubMed  CAS  Google Scholar 

  123. Mundschau G, Gurbuxani S, Gamis AS, Greene ME, Arceci RJ, Crispino JD. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood. 2003;101(11):4298–300.

    PubMed  CAS  Google Scholar 

  124. Xu G, Nagano M, Kanezaki R, Toki T, Hayashi Y, Taketani T, et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome. Blood. 2003;102(8):2960–8.

    PubMed  CAS  Google Scholar 

  125. Cabelof DC, Patel HV, Chen Q, van Remmen H, Matherly LH, Ge Y, et al. Mutational spectrum at GATA1 provides insights into mutagenesis and leukemogenesis in Down syndrome. Blood. 2009;114(13):2753–63.

    PubMed  CAS  Google Scholar 

  126. Baschat AA, Wagner T, Malisius R, Gembruch U. Prenatal diagnosis of a transient myeloproliferative disorder in trisomy 21. Prenat Diagn. 1998;18(7):731–6.

    PubMed  CAS  Google Scholar 

  127. Robertson M, De Jong G, Mansvelt E. Prenatal diagnosis of congenital leukemia in a fetus at 25 weeks’ gestation with Down syndrome: case report and review of the literature. Ultrasound Obstet Gynecol. 2003;21(5):486–9.

    PubMed  CAS  Google Scholar 

  128. Smrcek JM, Baschat AA, Germer U, Gloeckner-Hofmann K, Gembruch U. Fetal hydrops and hepatosplenomegaly in the second half of pregnancy: a sign of myeloproliferative disorder in fetuses with trisomy 21. Ultrasound Obstet Gynecol. 2001;17(5):403–9.

    PubMed  CAS  Google Scholar 

  129. Ge Y, Stout ML, Tatman DA, Jensen TL, Buck S, Thomas RL, et al. GATA1, cytidine deaminase, and the high cure rate of Down syndrome children with acute megakaryocytic leukemia. J Natl Cancer Inst. 2005;97(3):226–31.

    PubMed  CAS  Google Scholar 

  130. Lange B. The management of neoplastic disorders of haematopoiesis in children with Down’s syndrome. Br J Haematol. 2000;110(3):512–24.

    PubMed  CAS  Google Scholar 

  131. Lange BJ, Kobrinsky N, Barnard DR, Arthur DC, Buckley JD, Howells WB, et al. Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: children’s cancer group studies 2861 and 2891. Blood. 1998;91(2):608–15.

    PubMed  CAS  Google Scholar 

  132. Ravindranath Y, Abella E, Krischer JP, Wiley J, Inoue S, Harris M, et al. Acute myeloid leukemia (AML) in Down’s syndrome is highly responsive to chemotherapy: experience on pediatric oncology group AML study 8498. Blood. 1992;80(9):2210–4.

    PubMed  CAS  Google Scholar 

  133. Taub JW, Huang X, Matherly LH, Stout ML, Buck SA, Massey GV, et al. Expression of chromosome 21-localized genes in acute myeloid leukemia: differences between Down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin. Blood. 1999;94(4):1393–400.

    PubMed  CAS  Google Scholar 

  134. Maloney KW, Carroll WL, Carroll AJ, Devidas M, Borowitz MJ, Martin PL, et al. Down syndrome childhood acute lymphoblastic leukemia has a unique spectrum of sentinel cytogenetic lesions that influences treatment outcome: a report from the children’s oncology group. Blood. 2010;116(7):1045–50.

    PubMed  CAS  Google Scholar 

  135. Tigay JH. A comparison of acute lymphoblastic leukemia in Down syndrome and non-Down syndrome children: the role of trisomy 21. J Pediatr Oncol Nurs. 2009;26(6):362–8.

    PubMed  Google Scholar 

  136. Whitlock JA, Sather HN, Gaynon P, Robison LL, Wells RJ, Trigg M, et al. Clinical characteristics and outcome of children with Down syndrome and acute lymphoblastic leukemia: a children’s cancer group study. Blood. 2005;106(13):4043–9.

    PubMed  CAS  Google Scholar 

  137. Whitlock JA. Down syndrome and acute lymphoblastic leukaemia. Br J Haematol. 2006;135:595–602.

    PubMed  Google Scholar 

  138. Bercovich D, Ganmore I, Scott LM, Wainreb G, Birger Y, Elimelech A, et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet. 2008;372(9648):1484–91.

    PubMed  CAS  Google Scholar 

  139. Kearney L, Gonzalez De Castro D, Yeung J, Procter J, Horsley SW, Eguchi-Ishimae M, et al. Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia. Blood. 2009;113(3):646–8.

    PubMed  CAS  Google Scholar 

  140. Hertzberg L, Vendramini E, Ganmore I, Cazzaniga G, Schmitz M, Chalker J, et al. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the international BFM study group. Blood. 2010;115(5):1006–17.

    PubMed  CAS  Google Scholar 

  141. Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA, Calasanz MJ, et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood. 2009;114(13):2688–98.

    PubMed  CAS  Google Scholar 

  142. Izraeli S. Similar yet different. Blood. 2010;116(7):1019–20.

    PubMed  CAS  Google Scholar 

  143. Kudo K, Hama A, Kojima S, Ishii R, Morimoto A, Bessho F, et al. Mosaic Down syndrome-associated acute myeloid leukemia does not require high-dose cytarabine treatment for induction and consolidation therapy. Int J Hematol. 2010;91(4):630–5.

    PubMed  CAS  Google Scholar 

  144. Stepensky P, Brooks R, Waldman E, Revel-Vilk S, Izraeli S, Resnick I, et al. A rare case of GATA1 negative chemoresistant acute megakaryocytic leukemia in an 8-month-old infant with trisomy 21. Pediatr Blood Cancer. 2010;54(7):1048–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeba N. Singh M.B.B.S., MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, Z.N., Gulley, M.L. (2012). Myelodysplasia and Myeloid Proliferations. In: Mackinnon Jr, A. (eds) Pediatric Neoplasia. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-116-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-116-5_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-115-8

  • Online ISBN: 978-1-62703-116-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics